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a b s t r a c t

The influences of chemical composition and process features on the yield strength of hot strip steels were
modeled by artificial neural network (ANN). The developed model revealed good agreement with exper-
imental data taken from Mobarakeh Steel Company (MSC). The results for the several input parameters
are shown and compared with metallurgical phenomena such as elemental effects or strengthening
mechanisms. The developed model can be used as a quantitative guide to control the final mechanical
properties of commercial low carbon steel products.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Low carbon strip steels occupy large portion of annual steel pro-
duction. They have a range of yield strengths which is suitable for
different applications [1]. Hot stripping is a severe plastic deforma-
tion which is applied on cast steels for a variety of shapes and sizes.
The process enhances the properties of steels by several metallur-
gical mechanisms which take place in different parts of the hot
strip mill. These include:

1. Austenitization, dissolution of microalloy compounds and
homogenization of the chemical segregation in the reheating
furnace.

2. Deformation and reduction of reheated slab to intermediate
thickness which is accompanied with recrystallization, grain
growth and precipitation of alloying and microalloy elements
in roughing and finishing mills.

3. Phase transformation and precipitation during cooling and
decreasing the heat to room temperature [2,3].

These mechanisms depend on steel composition and process
features, therefore, estimating the yield strength from these
parameters is desirable from engineering view point. Traditionally,
setting the tolerances is carried out by making several samples and
checking the final results by trial and error approach. Generally,

these procedures are expensive and time-consuming. Also, devel-
oping a physical model with such a complexity is extremely diffi-
cult. For these reasons, a model is introduced based upon a
neural network method. This model is capable of understand very
complex and unknown relationships between inputs and output
data. Furthermore, the model can explore the effect of the individ-
ual input on output which can be extremely difficult in the exper-
imental tasks.

Achieved model can be used as a quantitative tool to predict the
final YS of these commercial low carbon steels with different of in-
put variables. This is desirable from designing and engineering
point of view. Moreover analysis of the effect of input parameters
on results may leads to design new steels with different input
parameters.

2. Method

2.1. Artificial neural networks

A neural network is an interconnected network of a set of sim-
ple processing units which are connected by a set of connections
called ‘‘weights”. They can learn the given information by a set of
examples and transfer them to their structure. The method which
is inspired from studying the human brain, is capable of recogniz-
ing complex patterns of the training data and can be applied to
regression and classification tasks. The training is an optimization
procedure by finding a set of weights which combined with pro-
cessing units, describes the data pattern. There are several advan-
tages in this method. Firstly, there is no need to choose the
behavior of the model in advance. Secondly, its need to train data,
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does not grow as fast as other conventional regression methods
and therefore, growing the complexity and dimensionality of the
problem does not need any further data. The general structure
(called architecture) in this network consists of three types of lay-
ers, input, hidden and output layers. The number of units in input
and output layers are dictated by the problem, but the number of
hidden units which control the complexity of the model, must be
determined. The processing units for computational convenience,
like hyperbolic tangent sigmoid functions are easily differentiable,
and are employed in the present model:

hi ¼
2

ð1þ expð�2nÞÞ � 1
ð1Þ

Also, in feed forward ANN the architecture only consists of forward
connections. This is illustrated in Fig. 1.

2.2. Experimental database

The neural network method is an empirical method. For this
reason, the results are strongly dependent to the given data. In this
work, the annual product data reports of Mobarakeh Steel Com-
pany (MSC) for hot strip mills, were used. The input parameters
included:

(i) Final thickness.
(ii) Initial and final weight.

(iii) Initial width.
(iv) Reheating, roughing, finishing and coiling temperatures.
(v) The chemical composition (14 elements).

(vi) The carbon equivalent.

A total number of 70,234 examples were available for modeling
the network. Since the number of available data is too many, the

Fig. 1. Schematic architecture of neural network.

Table 1
Input parameter information.

No. Inputs Min Max Mean SD

1 Final thickness (mm) 1.5 16 5.244903 3.155532
2 Final weight (kg) 5097 28030 18502.91 3214.769
3 Initial weight (kg) 5202 28660 18874.26 3264.811
4 Initial width (mm) 650 1850 1277.022 205.7713
5 Furnace temp. (�C) 1164 1296 1229.77 23.4407
6 Roughing temp. (�C) 932 1122 1058.281 14.00645
7 Finishing temp. (�C) 782 960 881.1131 23.32006
8 Coiling temp. (�C) 517 729 610.5108 18.02052
9 C (wt%) 0.03 0.21 0.126968 0.02545
10 Si (wt%) 0 0.347 0.070235 0.084277
11 Mn (wt%) 0.175 1.38 0.658662 0.206133
12 P (wt%) 0.001 0.026 0.006786 0.002377
13 S (wt%) 0 0.02 0.008637 0.002686
14 Cu (wt%) 0 0.264 0.029318 0.011597
15 Al (wt%) 0.007 0.093 0.045926 0.010957
16 N (ppm) 15 90 39.784 9.221
17 Nb (wt%) 0 0.06 0.004854 0.009032
18 V (wt%) 0 0.043 0.003378 0.001607
19 Ti (wt%) 0 0.042 0.001654 0.002318
20 Mo (wt%) 0 0.022 0.003654 0.004104
21 Cr (wt%) 0.001 0.194 0.011992 0.008007
22 Ni (wt%) 0.016 0.243 0.028205 0.004679
23 Ceq (wt%) 0.068032 0.437799 0.2443845 0.0534388

SD: standard deviation, Ceq: carbon equivalent. Fig. 2. Behavior of model on (a) training data, and (b) test data.
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