Accepted Manuscript

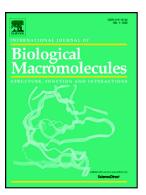
Dual-responsive IPN hydrogel based on sugarcane bagasse cellulose as drug carrier

Yuanfeng Pan, Jingchun Wang, PingxiongCai, Huining Xiao

PII: S0141-8130(18)30854-7

DOI: doi:10.1016/j.ijbiomac.2018.06.072

Reference: BIOMAC 9912


To appear in: International Journal of Biological Macromolecules

Received date: 22 February 2018

Revised date: 8 June 2018 Accepted date: 13 June 2018

Please cite this article as: Yuanfeng Pan, Jingchun Wang, PingxiongCai, Huining Xiao, Dual-responsive IPN hydrogel based on sugarcane bagasse cellulose as drug carrier. Biomac (2017), doi:10.1016/j.ijbiomac.2018.06.072

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Yuanfeng Pan, Jingchun Wang et al. / International Journal of Biological Macromolecules

Dual-responsive IPN hydrogel based on sugarcane bagasse cellulose as drug carrier

Yuanfeng Pan a,*, Jingchun Wang a, PingxiongCai b, Huining Xiaoc

^a Guangxi Key Lab of Petrochemical Resource Processing and Process Intensification Tech., School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004 China

^b College of Petroleum and Chemical Engineering, Qinzhou University, Qinzhou, 535006 China

^c Department of Chemical Eng., University of New Brunswick, Fredericton, NB, E3B 5A3 Canada.

* Corresponding author. Tel.: +86 771 3236484; fax: +86 771 3236484 E-mail addresses: panyf@gxu.edu.cn. Guangxi University, 100 Daxue Road Nanning, 530004 China

Abstract:

In this work, the stepwise synthesis of interpenetrating polymer network (IPN) strategy was developed in an attempt to fabricate novel hydrogels consisting of sugarcane bagasse cellulose (SBC), carboxymethylcellulose (CMC) and poly (N-isopropylacrylamide) (PNIPAm) as a dual-responsive drug carrier. The pretreated and dissolved SBC was pre-crosslinked using epichlorohydrin in the presence of CMC, followed by in-situ free-radical polymerization of NIPAm in the presence of N,N'-Methylene-bis(acrylamide) as a crosslinking agent. The carboxyl groups in CMC and PNIPAm chains rendered the resulting hydrogel pH and thermal responsive. The results from scanning electron microscopy, infrared spectroscopy, thermogravimetric analysis and mechanical property testing demonstrated the successful formation of the IPN with proper structure and mechanical strength. The swelling experiments at different temperatures and pH showed the dual-sensibility of the hydrogels. Moreover, bovine serum albumin (BSA) was used as a model drug and loaded in the hydrogel; and the drug release behavior was revealed in phosphate buffer solution (PBS) and simulated gastric fluid (SGF). The results indicated that the dual-responsive IPN hydrogel is of great potential for the controlled release of drug.

Download English Version:

https://daneshyari.com/en/article/8326724

Download Persian Version:

https://daneshyari.com/article/8326724

<u>Daneshyari.com</u>