Accepted Manuscript

The first two mitochondrial genomes of the family Aphelinidae with novel gene orders and phylogenetic implications

Jia-chen Zhu, Pu Tang, Bo-Ying Zheng, Qiong Wu, Shu-jun Wei, Xue-xin Chen

PII: S0141-8130(18)32200-1

DOI: doi:10.1016/j.ijbiomac.2018.06.087

Reference: BIOMAC 9927

To appear in: International Journal of Biological Macromolecules

Received date: 8 May 2018 Revised date: 17 June 2018 Accepted date: 18 June 2018

Please cite this article as: Jia-chen Zhu, Pu Tang, Bo-Ying Zheng, Qiong Wu, Shu-jun Wei, Xue-xin Chen, The first two mitochondrial genomes of the family Aphelinidae with novel gene orders and phylogenetic implications. Biomac (2018), doi:10.1016/j.ijbiomac.2018.06.087

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

The first two mitochondrial genomes of the family Aphelinidae with novel gene orders and phylogenetic implications

Jia-chen Zhu¹, Pu Tang¹, Bo-Ying Zheng¹, Qiong Wu¹, Shu-jun Wei², Xue-xin Chen^{1*}

1 State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular

Biology of Plant Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University,

Hangzhou 310058, China

2 Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.

Abstract

Chalcidoidea is one of the most diverse group in Hymenoptera by possessing striking mitochondrial gene arrangement. By using next generation sequencing method, the first two nearly complete mitochondrial genomes in the family Aphelinidae (Insecta, Hymenopetra, Chalcidoidea) were obtained in this study. Almost all previously sequenced mitochondrial genome of Chalcidoidea species have a large inversion including six genes (atp6-atp8-trnD-trnK-cox2-trnL2-cox1) as compared with ancestral mitochondrial genome, but these two Encarsia mitochondrial genomes had a large inversion including nine genes

(nad3-trnG-atp6-atp8-trnD-trnK-cox2-trnL2-cox1), which was only congruent with the species in the genus Nasonia. Moreover, we found that one shuffling changes (trnD and trnK) happened in the species E. obtusiclava but not in another species E. formosa within the same genus, of which such shuffling within the same genus at this region was only detected in Polisters within Insecta. Phylogenetic analysis displayed that different data matrix (13PCG+ 2 rRNA or 13 PCG) and inference methods (BI or ML) indicate the identical topology with high nodal supports that Aphelinidae formed a sister group with (Trichogrammatidae + Aganoidae) and the monophyly of Pteramalidae. Our results also indicated the validity of assembling and feasibility of next-generation technology to obtain the mitochondrial genomes of parasitic Hymenoptera.

Keywords: mitochondrial genome; phylogeny; Chalcidoidea

^{*}corresponding author; E-mail: xxchen@zju.edu.cn

Download English Version:

https://daneshyari.com/en/article/8326810

Download Persian Version:

https://daneshyari.com/article/8326810

<u>Daneshyari.com</u>