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Used as model for sandwich fusion, a mesophilic Aspergillus niger GH11 xylanase (Xyn) was fused into C2-Xyn-C2
with a thermophilic Thermotaga maritima GH10 xylanase carbohydrate-binding module CBM9_2 (C2). Linearized
plasmids C2-pET20b-C2-Xyn were amplified from template pET20b-Xyn-C2 with a 4.3 kb C2-pET20b
megaprimer, ligated into circular plasmids in blunt-end ligation, and transformed into E. coli BL21 (DE3) cells.
The C2-Xyn-C2 had optimum activity at 45 °C and pH 4.2, a 2.85 h thermal inactivation half-life at 80 °C and a
8.69 h at 50 °C, with the 8.69 h value 24.8-, 7.5-, and 7.1-fold longer than the Xyn and single terminal fusion en-

'S(sﬁ"c’fvofﬁfl fusion zymes Xyn-C2, and C2-Xyn. Thermodynamics showed that the enzyme had a 1.8 °C higher melting temperature,
Xylanase lower values AS, AAG, and a denser structure than the Xyn. Kinetics showed that the C2-Xyn-C2 catalytic effi-
Thermostability ciency was 1.2-~6-fold and 2.7-~7.9-fold higher on beechwood and oat-spelt xylan than those of the enzymes
Activity Xyn, Xyn-C2, and C2-Xyn. The sandwich fusion evolved the xylanase with “armor-hands” to enhance simulta-

neously thermostability and activity in quality.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Enzyme is widely used in biotechnology, and wide application de-
mands for thermostable enzymes. Enzyme thermostability has been ra-
tionally engineered, such as disulphide bond introduction [1-6],
computational design [7-10], site-directed mutation [11,12], and disor-
dered terminal residue deletion [13,14]. Relatively, a more straightfor-
ward strategy is fusing a thermophilic domain. Carbohydrate-binding
module (CBM) is a non-catalytic domain usually attached to a hydro-
lase. A CBM9 locates natively at the C-terminus of a Thermotaga
maritima thermophilic GH10 xylanase, and contains a sub-module
CBM9_2 (C2) [15,16]. When the C2 was fused at the C- or N-terminus
of an Aspergillus niger xylanase (Xyn), a typical GH11 family xylanase
that usually has no CBM, the Xyn thermostability was enhanced
[17-19].

However, all the CBMs are fused at an enzyme one terminus and are
usually consistent with their native locations relative to catalytic do-
mains, and these one terminal fusions only moderately enhanced en-
zyme thermostabilities or activities [17-22]. A novel concept is
sandwich fusion, i.e., fusing a CBM at an enzyme both termini. To
check the concept and effect on enzyme property, an ideal model is fus-
ing the mesophilic Xyn with the similar size thermophilic C2 into a C2-
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Xyn-C2 enzyme through a natural linker-peptide from the T. maritima
GH10 xylanase. The 193 residue Xyn has a 17.6 min thermal inactivation
half-life (t;/2) at 50 °C, and the 195 residue C2 has a denaturation tem-
perature above 100 °C[15-19]. The sandwich fusion simultaneously en-
hances the Xyn thermostability and activity in quality instead of only in
quantity.

2. Materials and methods

Q5 DNA polymerase, dNTPs, T4 DNA ligase, and Dpnl were pur-
chased from NEB (Beijing, China). pET20b-C2 and pET20b-C2-Xyn
were self constructed. Primers PC2P (p5’-CATATGATGGTAGCGACAGC-
3/, forward)/VR-P (p5'-GTATATCTCCTTCTTAAAGTTAAACAAAATTATT
TCTAG-3', reverse)/RX-P (p5’-AGAGGAGATCGTGACACTG-3’, forward)
were synthesized and phosphorated for blunt-ended ligation (Genewiz,
China).

2.1. Recombinant plasmid construction

2.1.1. Megaprimer amplification

The pET20b-C2-Xyn-C2 plasmid was constructed by a two-step PCR
[24]. A 4.2 kb linearized C2-pET20b DNA was amplified from the tem-
plate pET20b-C2 in a 1st-PCR with primers PC2P and VR-P to serve as
2nd-PCR megaprimer. Reaction was carried out in a 50 pL volume con-
taining 40 ng pET20b-C2, 500 nM primers PC2P and VR-P, 1 U Q5 DNA
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Fig. 1. Construction of the C2-Xyn-C2. (A) Plasmid construction. A 4.3 kb C2-pET20b DNA was amplified in the 1st-step with the primers PC2P and VRP, and served as megaprimer in the

2nd-step to amplify linearized C2-pET20b-C2-Xyn plasmids from the template pET20b-C2-.

Xyn by coupling with the primer RX. (B) PCR amplification and SDS-PAGE, DNA (BL1) and

protein marker (BL3). The amplified C2-pET20b-C2-Xyn linearized plasmids created a 5.5 kb band (BL2). The C2-Xyn-C2 created a 75 kDa band on a 12% SDS-PAGE gel (BL5), larger

than the Xyn (BL4).

polymerase, 200 pM dNTPs, and 1 x polymerase buffer. PCR procedure
was: pre-denaturation at 98 °C for 3 min, 30 cycles of denaturation at
98 °C for 30 s, annealing at 64 °C for 20 s, and extension at 72 °C for
149 s, extension at 72 °C for 10 min, and stored at 4 °C. The C2-
pPET20b DNA was purified from gel-electrophoresis with DNA clean kit
[Qiagen, China].

2.1.2. Plasmid amplification

Linearized plasmids C2-pET20b-C2-Xyn were amplified from the
template pET20b-C2-Xyn in a 2nd-PCR with the C2-pET20b
megaprimer and a reverse primer RX-P. Reaction was carried out in a
50 pL volume containing 80 ng pET20b-C2-Xyn templates, 240 ng C2-
pET20b forward megaprimer, 500 nM primer RX-P, 1 U Q5 DNA poly-
merase, 200 uM dNTPs, and 1 x buffer. PCR procedure was: pre-
denaturation at 94 °C for 5 min, 15 cycles of denaturation at 94 °C for
30 s, annealing at 80 °C for 30 s, RAMP with 0.2 °C/s, and annealing at
64 °C for 20 s, extension at 72 °C for 190 s, extension at 72 °C for
10 min, and stored at 4 °C.

2.1.3. Blunt-ended ligation

Ligation was carried out at 16 °C for 16 h in a 10 pL volume contain-
ing 60 ng linearized C2-pET20b-C2-Xyn purified with DNA clean kit
(Axygen, US), 700 U T4 DNA ligase, and 1 x buffer. Thereafter, 2 U
Dpnl was added to digest template plasmids at 37 °C for 3 h, and the
product was transformed into 200 pL E. coli BL21(DE3) home-made
competent cells in a standard 42 °C heat-shock method. After positive
transformant selection, recombinant plasmid was extracted and Sanger
sequenced (Genewiz, China).

2.2. Protein expression and purification

The accurate transformant was cultivated in LB medium at 37 °C and
220 r/min. Once the culture ODgg reached to 0.6, 0.5 mM IPTG was
added to induce protein expression at 25 °C for 5 h. Thereafter, cells
were collected and lysed by sonication. His-tagged proteins were
bound to Ni’T-binding resin (Amersham Biosciences), washed
processively with 10-fold volumes of 20, 30, and 50 mM imidazole elu-
tion buffers, and eluted with 100 mM imidazole buffers. After excluding
imidazoles, the purified enzymes were detected with 12% SDS-PAGE
and stained with Coomassie brilliant blue R-250. Protein concentration
was measured by the Bradford method.

2.3. Enzyme property assay

Enzyme property was assayed by the 3, 5-dinitrosalicylic acid (DNS)
method against beechwood xylan [13,18]. All experiments were con-
ducted in triplicate, and an average was reported for each value. The op-
timum pH (pHop:) was determined at 50 °C in different pH phosphate
buffers ranging from 3.0 to 4.8. The optimum temperature (Top) Was
determined in pH 4.2 buffers at temperature ranging from 38 °C to 51
°C.

Thermostability was determined by assaying respectively residual
activities after incubation at 50 °C and 80 °C for different periods, and
mineral oil was added to exclude interference of water evaporation.
Thermal inactivation half-life (t;,,) was calculated by fitting the data
with the thermal decay equation y = A = exp(—x/t).
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Fig. 2. Enzyme properties. Enzyme activity was assayed against beechwood xylan at different pH phosphate buffers (A) and different temperatures (B). Thermostability (C) was

determined at 50 °C (C2-Xyn-C2_50) and 80 °C (C2-Xyn-C2_80).
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