Accepted Manuscript

Crystal structure of DlyL, a mannose-specific lectin from Dioclea lasiophylla Mart. Ex Benth seeds that display cytotoxic effects against C6 glioma cells

Rodrigo Bainy Leal, Vanir Reis Pinto-Junior, Vinicius Jose Silva Osterne, Ingrid Alessandra Victoria Wolin, Ana Paula Machado Nascimento, Antonio Hadson Bastos Neco, David Alencar Araripe, Priscilla Gomes Welter, Corneville Correia Neto, Jorge Luis Almeida Correia, Cintia Renata Costa Rocha, Kyria Santiago Nascimento, Benildo Sousa Cavada

PII: S0141-8130(17)34293-9

DOI: doi:10.1016/j.ijbiomac.2018.03.080

Reference: BIOMAC 9302

To appear in:

Received date: 31 October 2017 Revised date: 28 February 2018 Accepted date: 16 March 2018

Please cite this article as: Rodrigo Bainy Leal, Vanir Reis Pinto-Junior, Vinicius Jose Silva Osterne, Ingrid Alessandra Victoria Wolin, Ana Paula Machado Nascimento, Antonio Hadson Bastos Neco, David Alencar Araripe, Priscilla Gomes Welter, Corneville Correia Neto, Jorge Luis Almeida Correia, Cintia Renata Costa Rocha, Kyria Santiago Nascimento, Benildo Sousa Cavada, Crystal structure of DlyL, a mannose-specific lectin from Dioclea lasiophylla Mart. Ex Benth seeds that display cytotoxic effects against C6 glioma cells. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Biomac(2017), doi:10.1016/j.ijbiomac.2018.03.080

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Crystal structure of DlyL, a mannose-specific lectin from *Dioclea lasiophylla* Mart. Ex Benth seeds that display cytotoxic effects against C6 glioma cells

Rodrigo Bainy Leal^{1,*}, Vanir Reis Pinto-Junior², Vinicius Jose Silva Osterne², Ingrid Alessandra Victoria Wolin¹, Ana Paula Machado Nascimento¹, Antonio Hadson Bastos Neco², David Alencar Araripe², Priscilla Gomes Welter¹, Corneville Correia Neto², Jorge Luis Almeida Correia², Cintia Renata Costa Rocha³, Kyria Santiago Nascimento² and Benildo Sousa Cavada^{2,*}.

¹Universidade Federal de Santa Catarina (UFSC), Florianópolis-Santa Catarina, Brazil.

²Universidade Federal do Ceará (UFC), Fortaleza-Ceará, Brazil.

³Universidade Federal de Pernambuco (UFPE), Pernambuco - Recife, Brazil.

*Corresponding authors.

Abstract

Lectins are a class of carbohydrate-binding proteins or glycoproteins with diverse specificities and functions. The determination and characterization of the threedimensional structures of these proteins are keys to understanding their biological effects. Recent studies have explored the anticancer potential of Diocleinae lectins (from Leguminoseae family), evaluating their antiproliferative effect and their ability to induce glioma cell death via apoptosis and autophagy. In this work, the threedimensional structure of *Dioclea lasiophylla* seed lectin (DlyL) complexed with Xman (5-bromo-6-chloro-3-indolyl-α-D-mannopyranoside) was determined by X-ray crystallography. Moreover, interactions with relevant N-glycans were evaluated by molecular docking. DlyL presented the jellyroll motif, and both metal binding site (MBS) and carbohydrate-recognition domain (CRD) were determined and characterized. Molecular docking simulations indicated that DlyL interacts favorably with N-glycans, especially those of the complex and hybrid types, unlike previously studied Diocleinae lectins. DlyL also showed antitumor potential against rat C6 glioma cells impairing cell migration, inducing autophagy and cell death via activation of caspase 3. These results indicate that small structural differences among Diocleinae lectins can, in turn, result in differential modulation of autophagy and cell apoptosis processes.

Keywords: DlyL; crystal structure; glioma.

Download English Version:

https://daneshyari.com/en/article/8327149

Download Persian Version:

https://daneshyari.com/article/8327149

<u>Daneshyari.com</u>