
Artificial neural network approach for predicting optimum cure time of
rubber compounds
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a b s t r a c t

Artificial neural network (ANN) technique has emerged as a powerful tool which can be used for many
scientific and/or engineering applications such as process control and system modelling. ANNs are
inspired by the nervous biological architecture systems consisting of relatively simple systems working
in parallel to facilitate quick decisions. In this study, three different ANN architectures: multilayer per-
ceptron (MLP), Elman network and generalized regression neural network (GRNN) were used for model-
ling cure curves of a selected rubber compound at different temperatures. The ability of selected ANN
architectures on predicting optimum cure times of 11 different rubber compounds in a model tire was
studied. Equivalent cure concept, that is traditionally used in rubber and tire industries, was also applied
to pre-determine optimum cure times of the same compounds. The results of two techniques, i.e. ANN
and equivalent cure concept were compared in view of percentage error criteria. It has been concluded
that ANN could be used as a powerful and simple alternative technique for prediction of optimum cure
time.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The curing process is the final step in tire manufacturing,
whereby a green tire built from plies made of rubber compounds
and reinforcing fabrics. Curing and shaping of tires are accom-
plished by internal and external heat treatment. In curing process,
green tire is placed into curing machine while a bladder perma-
nently remains inside of the green tire and the desired shape of
the tire is formed during its curing in press. The major operating
variables of the curing process are the conditions of the supplied
cure media, which are to be varied according to the specified tem-
perature and pressure of the cure media as a function of time so
that the rubber compounds may attain specified degree of cure.
But in practice, the distributed nature of the heat transfer mecha-
nism makes it difficult to have every compound reach the respec-
tive target level. Interior layers of a tire cannot be fully cured
without causing the overcure of surface layers and the consequent
reversion of vulcanized crosslinks. Accordingly, it becomes neces-
sary to make trade-offs between different parts of the tire with re-
spect to the attainable degree of cure [1].

Three main steps of rubber cure can be distinguished in the cure
curve regions for a typical accelerated sulfur vulcanization process
as shown in Fig. 1. In the first region, there is a scorch delay or

induction period that provides a safe processing time. It is believed
that the accelerator chemistry is mostly involved in this period.
The second region is the curing period, during which network
structure is formed. The third period is called overcure that may
occur as reversion, equilibrium, or marching cure behaviours
according to the compound characteristics. It is well known that
overcure of many tire compounds results in reversion which is ob-
served in rheometric cure curves that pass through a maximum
torque value. Since reversion usually has an undesirable effect on
product quality, it becomes necessary to optimize the curing pro-
cess [2].

Typical cure curves can be obtained with a moving die rheom-
eter (MDR) which is technically a curemeter. The curemeter is
based on the fact that the crosslinking density is proportional to
the stiffness of the rubber [3]. This equipment is used to measure
the torque required to oscillate the die. As vulcanization proceeds
at a specific temperature, the torque required to shear the rubber
compound increases and a curve of torque versus curing time
can be generated. The use of this curemeter and standardized val-
ues read from the curve is specified in ASTM D 2084. Some of these
recommended values that are important to know for this study are

ML: Minimum torque in N.m or lbf.in.
MH: Maximum torque where curve plateaus are in N.m or lbf.in.
tx: Minutes to x% of torque increase, tx = minutes for torque
value equivalent to ML + x(MH �ML)/100.
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In rubber terminology, t90 is defined as ‘‘optimum cure time” for
the rubber compounds. Rubber compounds that have different for-
mulations differ also in curing behaviours. This difference is more
evident in the compounds with fillers (usually carbon black) due to
matrix–filler interactions. For filled elastomers, the maximum tor-
que value usually decreases as the temperature increases. As a re-
sult of matrix–filler interactions and other effects such as the
thermal instability of polysulfide linkages, the full cure at different
temperatures may not represent the same network chain density
[4]. So, it can be said that the torque values obtained during vulca-
nization of a rubber compound are related to compound formula-
tion and curing temperature. On the other hand, curing
temperature and the torque value that can be obtained at that tem-
perature must be known to predict optimum cure time of a rubber
compound.

Over the last 15 years ANN techniques have emerged as a pow-
erful tool that could be used to replace time consuming procedures
in many scientific and/or engineering applications [5]. However,
there are relatively limited ANN studies met on rubber and tire lit-
erature and most of these studies focus on design of tire and tire
curing equipments [6–8]. The ability of an ANN to evaluate the var-
iability of rheometric properties of rubber compounds from their
formulation was also studied [9]. Contrary to the previous study,
in this study a model rubber compound was selected for modelling
its cure curves in different temperatures using ANN. Then, the abil-
ity of selected ANN architectures on predicting optimum cure time
of 11 different rubber compounds in a model tire was studied.

1.1. Artificial neural networks

An ANN is a mathematical model or computational model based
on biological neural networks. The basic artificial neuron that pro-
cesses the input information into output information is shown in
Fig. 2. Neural networks are made of this type basic units arranged
in layers. A unit collects information provided by other units (or by
the external world) to which it is connected through weighted con-
nections, known as synapses. These synaptic weights, multiply (i.e.
amplify or attenuate) the input information [9–11]. Each of these
units is a simplified model of a neuron and transforms its input
into output response. This transformation involves two steps: First,
the activation of the neuron is computed as the weighted sum of its
inputs, and second, this activation is transformed into a response

by using a transfer function. Formally, if each input is denoted xi

and each weight wi, then the computation of activation is equal
to a which is sum of wixi and the output is obtained as transfer
function f. Any function whose domain is the real numbers can
be used as a transfer function. The most popular ones are linear,
step, threshold, logarithmic sigmoid and hyperbolic tangent sig-
moid functions.

Elman’s network is a recurrent network, whose output of hid-
den layer is feedback to input layer. The model is illustrated in
Fig. 3 [12]. The activation in the hidden layer at time t � 1 is copied
into the context vector, which is the input to the network for time
t. This is equivalent to having the hidden layer completely and
recurrently connected, and back-propagating one step in time
along the recurrent connections. The concept of the generalized
regression neural network (GRNN) is based on nonparametric esti-
mation commonly used in statistics. Nonparametric procedures
and GRNN approach are the best solutions as the sample size grows
large [13]. Relating to the radial basis function (RBF) networks that
have the universal approximation property arise naturally as regu-
larized solutions of ill-posed problems and are dealt well in the
theory of interpolation [14]. Simple structure of RBF networks en-
ables in learning stages, leads to a reduction in the training time
and consequently such networks have been applied to many prac-
tical problems. The adjustable parameters of such networks are the
center (the location of basis function), the width of the receptive
fields (the spread), the shape of the receptive field and the linear
output weights. GRNN can be treated as a normalized RBF network
in which there is a hidden unit centered in every training case.
Schematic diagram of GRNN architecture is shown in Fig. 4.

Fig. 2. Basic neural unit.

Fig. 3. Basic scheme of Elman network.

Fig. 1. A typical accelerated sulfur vulcanization cure curve obtained from a cure
meter.
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