Accepted Manuscript

Title: Understanding the adhesion mechanism of a mucin binding domain from *Lactobacillus fermentum* and its role in enteropathogen exclusion

Authors: Maitrayee Chatterjee, Anju Choorakottayil Pushkaran, Anil Kumar Vasudevan, Krishna Kumar N. Menon, Raja Biswas, Chethampadi Gopi Mohan

PII: S0141-8130(17)33078-7

DOI: https://doi.org/10.1016/j.ijbiomac.2017.10.107

Reference: BIOMAC 8402

To appear in: International Journal of Biological Macromolecules

Received date: 17-8-2017 Revised date: 13-10-2017 Accepted date: 16-10-2017

Please cite this article as: Maitrayee Chatterjee, Anju Choorakottayil Pushkaran, Anil Kumar Vasudevan, Krishna Kumar N.Menon, Raja Biswas, Chethampadi Gopi Mohan, Understanding the adhesion mechanism of a mucin binding domain from Lactobacillus fermentum and its role in enteropathogen exclusion, International Journal of Biological Macromolecules https://doi.org/10.1016/j.ijbiomac.2017.10.107

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Understanding the adhesion mechanism of a mucin binding domain from Lactobacillus

fermentum and its role in enteropathogen exclusion

Maitrayee Chatterjee¹, Anju Choorakottayil Pushkaran¹, Anil Kumar Vasudevan²,

Krishna Kumar N. Menon¹, Raja Biswas*¹ rajabiswas@aims.amrita.edu, Chethampadi

Gopi Mohan*1 cgmohan@aims.amrita.edu

Running title: Mucin binding domain of *Lactobacillus fermentum*

¹ Centre for Nanosciences and Molecular Medicine, Amrita University, Cochin 682041,

Kerala, India.

² Department of Microbiology, Amrita Institute of Medical Sciences and Research Centre,

Amrita University, Cochin 682041, Kerala, India.

*To whom correspondence should be addressed: Raja Biswas or Chethampadi Gopi Mohan

Abstract:

Lactobacillus species possesses surface exposed Mucin Binding Protein (MucBP) which

plays a role in adhesion to gastrointestinal mucin. MucBP contains one or more mucin

binding domain (MBD), the functionality of which has yet not been characterized thoroughly.

Here, we have characterized a 93-amino acid MBD (MBD₉₃) of MucBP (LAF 0673) from

Lactobacillus fermentum. Multiple sequence alignment of L. fermentum MBD93 exhibited

~60% sequence homology with MBDs from other *Lactobacillus* species. Further, we cloned,

expressed and purified MBD₉₃ from Escherichia coli as N-terminal histidine-tagged protein

(6X His-MBD₉₃). The purified MBD₉₃ was able to bind to mucin and showed strong affinity

towards the terminally expressed mucin glycans viz. N-acetylgalactosamine (GalNAc), N-

acetylglucosamine (GlcNAc), Galactose (Gal), and Sialic acid (N-acetylneuraminic acid;

Download English Version:

https://daneshyari.com/en/article/8328113

Download Persian Version:

https://daneshyari.com/article/8328113

<u>Daneshyari.com</u>