Accepted Manuscript

Title: Diversity in cadmium accumulation and resistance associated with various metallothionein genes (type III) in *Phytolacca americana* L.

Authors: Chen Yongkun, Zhi Junkai, Li Xiaoyu, Zhang Hao, Liu Huabo, Xu Jichen

PII: S0141-8130(17)33759-5

DOI: https://doi.org/10.1016/j.ijbiomac.2017.11.152

Reference: BIOMAC 8632

To appear in: International Journal of Biological Macromolecules

Received date: 29-9-2017 Revised date: 23-11-2017 Accepted date: 23-11-2017

Please cite this article as: Chen Yongkun, Zhi Junkai, Li Xiaoyu, Zhang Hao, Liu Huabo, Xu Jichen, Diversity in cadmium accumulation and resistance associated with various metallothionein genes (type III) in Phytolacca americana L., International Journal of Biological Macromolecules https://doi.org/10.1016/j.ijbiomac.2017.11.152

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Diversity in cadmium accumulation and resistance

associated with various metallothionein genes (type

III) in Phytolacca americana L.

Chen Yongkun, Zhi Junkai, Li Xiaoyu, Zhang Hao, Liu Huabo, Xu Jichen*

National Engineering Laboratory of Tree Breeding, Beijing Forestry University, 100083, China

* Corresponding author: National Engineering Laboratory of Tree Breeding, Beijing Forestry

University, 100083, China. E-mail address: jcxu282@sina.com

Abstract

Metallothioneins (MTs) are known for their heavy metal deoxidation during phytoremediation. To

estimate their roles in the cadmium (Cd) hyperaccumulator Phytolacca americana L., three MT genes,

PaMT3-1, PaMT3-2 and PaMT3-3, belonging to the MT3 subfamily were cloned. They separately

encoded 63, 65 and 65 amino acids, respectively, containing 12, 10 and 11 cysteines, respectively. Each

gene was individually transformed and expressed in Escherichia coli cells. A Cd-resistance assay

showed that the recombinant strains had enhanced survival rates, especially those containing PaMT3-1

and PaMT3-3. Additionally, the recombinant strains were high Cd accumulators, with the recombinant

PaMT3-1's maximum accumulation being 2.16 times that of the empty vector strains. The numbers of

cysteines and the structures of MT proteins were associated with the Cd enrichment and resistance

capabilities. PaMT3-1 could be an effective gene resource in future plant Cd remediation-related

breeding programs.

Keywords: metallothionein; *Phytolacca americana* L.; prokaryotic expression

1. Introduction

Metallothionein (MT) is a low molecular weight, cysteine-rich protein that ubiquitously exists in

eukaryotes and cyanobacteria [1,2]. It can bind heavy-metal ions by coordinate bonds to form nontoxic

or minimally toxic complexes [3,4], and also act as an antioxidant to protect plants from oxidative

damage [5,6]. MT, therefore, plays an important role in improving the heavy-metal resistance of plants

[7]. To date, MT and MT-like genes have been widely identified from a variety of plants and their

1

Download English Version:

https://daneshyari.com/en/article/8328585

Download Persian Version:

https://daneshyari.com/article/8328585

<u>Daneshyari.com</u>