Accepted Manuscript

Title: Revalorization of Selected Municipal Solid Wastes as New Precursors of "Green" Nanocellulose via a Novel

One-Pot Isolation System: A Source Perspective

Authors: You Wei Chen, Hwei Voon Lee

PII: S0141-8130(17)32293-6

DOI: http://dx.doi.org/10.1016/j.ijbiomac.2017.08.143

Reference: BIOMAC 8136

To appear in: International Journal of Biological Macromolecules

Received date: 23-6-2017 Revised date: 18-8-2017 Accepted date: 27-8-2017

Please cite this article as: You Wei Chen, Hwei Voon Lee, Revalorization of Selected Municipal Solid Wastes as New Precursors of "Green" Nanocellulose via a Novel One-Pot Isolation System: A Source Perspective, International Journal of Biological Macromoleculeshttp://dx.doi.org/10.1016/j.ijbiomac.2017.08.143

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Revalorization of Selected Municipal Solid Wastes as New Precursors of "Green"

Nanocellulose via a Novel One-Pot Isolation System: A Source Perspective

You Wei Chen, Hwei Voon Lee*

Nanotechnology & Catalysis Research Centre (NANOCAT), Institute of Postgraduate

Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia

*Corresponding author; Email: leehweivoon@um.edu.my;

Tel: +603-7967 6954, Fax: +603-7957 6956

Highlights

• A new and novel one-pot oxidative hydrolysis process has been developed for the

facile production of nanocellulose.

• Four types of nanocellulose were successfully isolated from new potential sources,

namely Panax ginseng, spent tea residue, waste cotton cloth and old corrugated

cardboard.

• Waste cotton cloth derived nanocellulose rendered the highest crystallinity (83.6%)

and better thermal stability (339 °C) than the others.

• Nanocellulose extracted from *Panax ginseng* possessed the smallest fiber width (15.6

 \pm 4.5 nm) with high cellulose content (92.6%).

• The nanocellulose yield obtained in this study was ranged from 24.6 to 69.3%.

Download English Version:

https://daneshyari.com/en/article/8328762

Download Persian Version:

https://daneshyari.com/article/8328762

<u>Daneshyari.com</u>