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a b s t r a c t

The stiffness and the strength of block lattice truss materials were derived, as well as polyhedrical yield
surfaces. Tension yield, compression yield and compression buckling of struts are the three main micro-
failure mechanisms of the lattice materials. It is shown that when the relative density of the lattice is
smaller than a critical value micro compression buckling of struts will dominate the macro failure mode
of the material under macro shearing loading or even macro tensile loading. The lattice truss materials
may be optimal designed according to their stacking mode of struts and the critical relative density.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Lattice truss materials are made up of stacks of struts intercon-
nected at the nodes [1]. Lengths of struts are always at the level of
centimeter. With the same topology as macro space truss struc-
tures, the nodes of lattice truss materials can be simplified as
pin-jointed and the struts are mainly uniaxial stretched or com-
pressed under macro loadings. To form this stretching dominated
topology, not less than six stacks of struts are required to intercon-
nect the periodic unit cells. Neglecting the bending effect, the lat-
tice truss materials are much stronger and stiffer than traditional
cellular materials. They are the most attractive lightweight struc-
tures [1] and possess attractive potential applications in the aero-
space engineering and high speed transportation vehicles. Until
now several types of lattice truss materials have been manufac-
tured, including octet-truss materials [2], block lattice truss mate-
rials [3] and truss-core sandwiches with tetrahedral, pyramidal or
diamond lattices [4–6]. Periodic unit cells of typical lattice struc-
tures as shown in Figs. 1 and 2 includes two classes. One special
class are lattice truss materials made up of only six stacks of struts
as shown in Fig. 1. With six stacks, the lattice truss materials are
statically determinate. The stress of each strut can be acquired
by the equilibrium equations of forces. Nodes of frameworks
including octet-truss cells, octahedral cells and tetrahedral cells
are all similarly situated. The connectivity of nodes is 12 and satis-
fied with the stretching dominated principle suggested by Desh-
pande et al. [1]. In diamond cells and pyramidal cells there are

two types of nodes. One has the connectivity of 12 and the other
has the connectivity of 6 or 8, which leads to anisotropic lattice
truss materials. Another class of the lattice truss material is the
block lattice truss material with seven stacks of struts as shown
in Fig. 2. With more than six stacks, the stress distribution of each
strut would be derived from the equilibrium equations and the
deformation of the cells and the material is statically
indeterminate.

With irregular micro structures, the mechanical properties of
foams are hard to predict and the yield surfaces are always built
with the help of experiments [7]. But for lattice truss materials
with periodic and regular micro unit cells composed of straight
struts, the mechanical properties are predictable and designable,
which was proved by Deshpande et al. [2]. In this paper, the stiff-
ness and the micro-failure mechanism of the statically indetermi-
nate block lattice truss material would be studied.

2. Stiffness and micro-failure mechanism

Based on the elongation responses of struts under uniaxial
forces, the relationship between the transformed stresses and
strains can be derived to formulate the continuum model [8].
According to this method, the effective stiffness matrix C of the lat-
tice material is given by [9]

C ¼ GTEG; ð1Þ

where G is the coordinate transformation matrix from local micro
strut to macro continuum, E is the effective tension stiffness of each
strut. The vector of force f of each bar is related to the continuum
stress r by
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f ¼ SðGTÞ�1r ð2Þ
for 3D lattices with six stacks, or

f ¼ ðSEGC�1Þr ð3Þ
for 3D lattices with more than six stacks. Symbol S is the effective
transection area distributed to each strut.

The block lattice truss material is made up of seven stacks of
struts as shown in Fig. 2. Compared with other determinate lattice
truss materials with six stacks of struts, such as octet-truss mate-
rials, the structure of the block lattice truss material is more com-
plex and indeterminate. According to Eq. (1), the stiffness matrix of
the lattice block material is

C¼ q�Es
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where q* is the relative density of the lattice material, Es is the
Young’s modulus of struts. Symbols a and L are the radius and
length of cell struts, respectively. According to Eq. (3) for statically
indeterminate lattices, the relationship between macro stresses r
and the strut force fij of each strut is derived as
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The failure of the macro lattice material is mainly caused by the
yield of micro struts under tension or compression. While the struts
are slender enough, the Euler buckling strength would be smaller
than the yield strength. At that time the failure of the macro lattice
material comes from the elastic buckling of struts. The micro-failure
modes would be suggested by

fij ¼
rYpa2; yield by tension
�rYpa2; yield by compression
�rEpa2; buckling by compression

8><
>:

ð7Þ

where symbols rY and rE denote the yield strength and the elastic
buckling strength, respectively. According to Eqs. (6) and (7) one
draws the conclusion that initial yield surfaces under general mac-
roscopic loadings are composed of the envelope of at most fourteen
super-planes in the stress space as follows:
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q�rY; for tension
�q�rY; for compression
�q�rE; for buckling
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where ri denotes the component of the stress tensor in axes x, y and
z, respectively.

The equivalent uniaxial yield strength ris and buckling strength
rib of the lattice block material are given by

rxs ¼ rys � 0:17q�rY

rxb ¼ ryb � 0:17q�rE

rzs � 0:27q�rY

rzb � 0:27q�rE

8>>><
>>>:

: ð9Þ

The equivalent shearing yield strength rijs and buckling strength rijb

of the lattice block material are given by

rxys � 0:163q�rY

rxyb � 0:163q�rE

ryzs ¼ rzxs � 0:191q�rY

ryzb ¼ rzxb � 0:191q�rE

8>>><
>>>:

: ð10Þ

According to Eqs. (4), (9), and (10) the stiffness and the strength are
anisotropic.

To check the validity of the theory, FE simulations were per-
formed to calculate the strength and the stiffness in axes z of the
lattice block truss materials made from aluminium casting alloys
(LM25). A Young’s modulus Es = 70 GPa and a yield strength
rY = 170 MPa [2] were used in the analytical predictions and the
FE calculations. The comparison between the analytical and FE pre-
dictions of the strength was shown in Fig. 3. Excellent agreement
between the FE and analytical calculations was revealed, which
solidified the validity of the equivalent continuum method. Thus
the method can be used to predict the yield surfaces of the lattice
truss materials.

3. Yield surfaces

According to Eq. (8), the yield surface of the lattice block mate-
rial in macroscopic (rx, ry, rz) space is sketched in Fig. 4. The whole
yield surface is made up of eight intersecting yield planes. These
planes are associated with tensile and compressive yield modes

(a) (b) (c) (d) (e) 

Fig. 1. Periodic unit cells of typical lattice truss materials: (a) octahedral cell; (b)
tetrahedral cell; (c) octet-truss cell; (d) diamond cell; and (e) pyramidal cell.
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Fig. 2. Unit cell of the lattice block material.
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