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a b s t r a c t

The aim of this paper is to investigate three-dimensional free vibration of functionally graded annular
plates with different boundary conditions using the Chebyshev–Ritz method, in which a set of duplicate
Chebyshev polynomial series multiplied by the boundary function satisfying the boundary conditions are
chosen as the trial functions of the displacement components. Two kinds of variations of material prop-
erties in the thickness direction of the plates are considered. Convergence of the Chebyshev–Ritz method
is checked. Numerical results are given and compared with the previously published solutions.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded materials (FGMs) were first proposed in
1984 by Japanese material scientists [1]. FGMs possess properties
that vary continuously as a function of position within the mate-
rial, thus FGMs can be used to avoid interfacial stress concentra-
tions appeared in laminated structures. Various applications of
FGMs can be found in Refs. [2,3].

Compared with the analysis of functionally graded plates [4–8]
and functionally graded spheres [9,10] as well as functionally
graded cylindrical shells [11,12], the study of functionally graded
circular and annular plates is very limited in number. Eraslan and
Akis [13] obtained the closed-form solution of functionally graded
rotating solid shaft and rotating solid disk under generalized plane
strain and plane stress assumptions, respectively. Prakash and
Ganapathi [14] analyzed the asymmetric flexural vibration and
thermoelastic stability of FGMs circular plates using finite element
method. Efraim and Eisenberger [15] studied the vibration of
variable thickness annular isotropic plates and functionally
graded plates. Nie and Zhong [16] investigated three-dimensional
vibration of functionally graded circular plates using semi-analyti-
cal method.

The Chebyshev–Ritz method has successfully been used to carry
out the analysis of free vibration of isotropic plates by Zhou et al.

[17–20]. The advantage of the Chebyshev–Ritz method in solving
free vibration of isotropic plates has been shown by Zhou et al.
[17–20]. It can be expected that the Chebyshev–Ritz method can
also be used to study free vibration of functionally graded plates.
To the best of author’s knowledge, the Chebyshev–Ritz method
has not been yet adopted to study free vibration of functionally
graded annular plates. Therefore in this paper, the formulation
using the Chebyshev–Ritz method can be considered as an exten-
sion of isotropic plate vibration analysis and it is similar to Zhou
et al. [17–20] but extended to three-dimensional free vibrations
of functionally graded annular plates with different boundary con-
ditions. Convergence of the Chebyshev–Ritz method is checked.
The obtained results are compared with the previously published
results.

2. Basic formulation

One functionally graded annular plate with inner radius R0 and
outer radius R1 and thickness h is studied in this paper. A cylindri-
cal coordinate system (r,h,z) with the origin o at the center of the
annular plate is used to describe the annular plate displacements,
i.e. the radial direction displacement u, the circumferential
direction displacement v and the thickness direction displacement
w.

The linear elastic strain energy V and kinetic energy T for a func-
tionally graded annular plate are given as follows:

V ¼
Z 2p
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in which for functionally graded materials with two constituent
materials Poisson ratio m is assumed to be constant through the thick-
ness, whereas the variations through the thickness of Young’s mod-
ulus E(z) and the mass density per unit volume q(z) can be written as

EðzÞ ¼ ðEm � EcÞV f ðzÞ þ Ec ð4aÞ

and

qðzÞ ¼ ðqm � qcÞV f ðzÞ þ qc ð4bÞ

where Em and Ec denote the Young’s moduli of the top and bottom
materials, respectively; qm and qc denote the mass density per unit
volume of the top and bottom materials, respectively; Vf is the vol-
ume fraction of the top material, and can be assumed to be the fol-
lowing form [11]:

V fðzÞ ¼
z
h
þ 1

2

� �g

ð5Þ

in which z is the thickness coordinate (�h/2 6 z 6 h/2), and g P 0 is
the gradient index.

Besides the above assumption of material properties, some
researchers [16,21,22] assumed the exponential variation of mate-
rial properties in the thickness direction of the plates, i.e.

EðzÞ ¼ Eceg z
hþ

1
2ð Þ ð6aÞ

and

qðzÞ ¼ qceg z
hþ

1
2ð Þ ð6bÞ

where Ec, qc, g, z and h are the same as those from Eqs. (4) and (5).
In Eq. (1), the matrix S is as follows:

S ¼ Srr Shh Szz Shz Srz Srh½ �T ð7Þ
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In numerical implementation, some dimensionless parameters
are introduced [18]

�r ¼ 2r
R
� d; h ¼ h; z ¼ 2z

h
ð9Þ

where R ¼ R1 � R0; d ¼ R1þR0
R1�R0

.
In the situation of free vibration, the displacement components

of the annular plate can be expressed into the following forms:

uðr; h; z; tÞ ¼ Uð�r; �h;�zÞeixt ; vðr; h; z; tÞ ¼ bV ð�r; �h;�zÞeixt ;

wðr; h; z; tÞ ¼Wð�r; �h;�zÞeixt ð10Þ

where x is the eigenfrequency of the circular annular plate and
i ¼

ffiffiffiffiffiffiffi
�1
p

.

Considering the circumferential symmetry of the circular annu-
lar plate about the coordinate h, the displacement amplitude func-
tions can be expressed as trigonometric functions in the
circumferential direction as

U �r; �h;�z
� �

¼ Uð�r;�zÞ cosðs�hÞbV ð�r; �h;�zÞ ¼ Vð�r;�zÞ sinðs�hÞ
Wð�r; �h;�zÞ ¼Wð�r;�zÞ cosðs�hÞ

ð11Þ

where s = 0,1, . . .,1. As mentioned by Zhou et al. [18], s = 0 means
the axisymmetric vibration, i.e. Uð�r; �h;�zÞ ¼ Uð�r;�zÞ; bV ð�r; �h;�zÞ ¼
0; Wð�r; �h;�zÞ ¼Wð�r;�zÞ. Rotating the symmetry axes by p/2, another
set of free vibration modes can be obtained, corresponding to an
interchange of cosðs�hÞ and sinðs�hÞ in Eq. (11). For this case, s = 0
means the torsional vibration, i.e. Uð�r; �h;�zÞ ¼ 0, bV ð�r; �h;�zÞ ¼ Vð�r;�zÞ,
Wð�r; �h;�zÞ ¼ 0.

Based on Eqs. (9)–(11), Eqs. (1) and (2) can be changed into the
following forms:
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and
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Each of the displacement amplitude functions can be written as
double series of Chebyshev polynomials multiplied by boundary
functions, i.e.
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where I, J, K, L, M and N are the truncation orders of the Chebyshev
polynomial series, respectively; Aij, Bkl, Cmn, Dop and Eqh are the coef-
ficients to be determined; PiðvÞ ði ¼ 1;2; . . . ; v ¼ �r;�zÞ is the one-
dimensional ith Chebyshev polynomial, i.e.
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