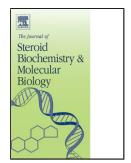
Accepted Manuscript

Title: Oestrogen receptor β (ER β) regulates osteogenic differentiation of human dental pulp cells

Authors: Aishah Alhodhodi, Hanaa Alkharobi, Matthew Humphries, Hasanain Alkhafaji, Reem El-Gendy, Georg Feichtinger, Valerie Speirs, James Beattie

PII: \$0960-0760(17)30281-9

DOI: https://doi.org/10.1016/j.jsbmb.2017.10.012


Reference: SBMB 5050

To appear in: Journal of Steroid Biochemistry & Molecular Biology

Received date: 3-8-2017 Revised date: 6-9-2017 Accepted date: 10-10-2017

Please cite this article as: Aishah Alhodhodi, Hanaa Alkharobi, Matthew Humphries, Hasanain Alkhafaji, Reem El-Gendy, Georg Feichtinger, Valerie Speirs, James Beattie, Oestrogen receptor β (ER β) regulates osteogenic differentiation of human dental pulp cells, Journal of Steroid Biochemistry and Molecular Biology https://doi.org/10.1016/j.jsbmb.2017.10.012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Oestrogen receptor β (ER β) regulates osteogenic differentiation of human dental pulp cells.

¹Aishah Alhodhodi, ¹Hanaa Alkharobi, ²Matthew Humphries#, ¹Hasanain Alkhafaji, ^{1,3}Reem El-Gendy, ¹Georg Feichtinger, ²Valerie Speirs* and ¹James Beattie*

²Leeds Institute of Cancer and Pathology, University of Leeds, UK

³Dept. of Oral Pathology, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt

- #Current address: Northern Ireland Molecular Pathology Laboratory. Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7AE, UK *Authors for correspondence
- V.Speirs@leeds.ac.uk
- J.Beattie@leeds.ac.uk

Highlights

- Oestrogen receptor expression in dental pulp cells (DPCs) is characterised
- ERβ1 and β2 isoforms are upregulated during osteogenic differentiation of DPCs
- ERβ isoforms activation stimulates differentiation of DPCs

<u>Abstract</u>

Estradiol (E₂) has many important actions in the tissues of the oral cavity. Disruption of E₂ metabolism or alterations in systemic E2 concentrations have been associated with compromised periodontal health. In many instances such changes occur secondarily to the well characterised effects of E₂ on bone physiology –especially maintenance of bone mineral density (BMD). Despite these important epidemiological findings, little is known about the mechanism of action of E₂ in oral tissues or the expression and function of oestrogen receptor (ER) isoforms in these tissues. We have isolated human dental pulp cells (hDPCs), which are able to differentiate towards an osteogenic lineage under appropriate culture conditions. We show that hDPCs express ERα, ERβ1, ERβ2 and the cell membrane associated G protein-coupled ER (GPR30). Following osteogenic differentiation of hDPCs, ERβ1 and ERβ2 were up regulated approximately 50-fold while ERα and GPR30 were down regulated, but to a much lesser degree (approximately 2-fold). ERB was characterised as a 59 kDa protein following Western blot analysis with validated antibodies and ERβ was detected in both nuclear and cytoplasmic cell compartments following immunofluorescence (IF) and immunohistochemical (IHC) analysis of cultured cells. Furthermore isoform specific antibodies detected both ER\u00e81 and ER\u00e82 in DPC cultures and in situ analysis of ER\u00e8 expression in decalcified tooth/pulp sections identified the odontoblast layer of pulp cells juxtaposed to the tooth enamel as strongly reactive for both ERB isoforms. Finally the use of isoform specific agonists identified ERB as the main receptor responsible for the pro-

¹ Dept of Oral Biology, Wellcome Trust Brenner Building, St James University Hospital, University of Leeds

Download English Version:

https://daneshyari.com/en/article/8337986

Download Persian Version:

https://daneshyari.com/article/8337986

<u>Daneshyari.com</u>