

Contents lists available at ScienceDirect

Journal of Steroid Biochemistry & Molecular Biology

journal homepage: www.elsevier.com/locate/jsbmb

Review

Suppression of epithelial ovarian cancer invasion into the omentum by $1\alpha,25$ -dihydroxyvitamin D_3 and its receptor

Panida Lungchukiet ^a, Yuefeng Sun ^a, Ravi Kasiappan ^a, Waise Quarni ^a, Santo V. Nicosia ^{a,b,d}, Xiaohong Zhang ^{a,b,c}, Wenlong Bai ^{a,b,c},*

- ^a The Departments of Pathology and Cell Biology, University of South Florida, H. Lee Moffitt Cancer Center, 12901 Bruce B. Downs Blvd., MDC 64, Tampa, FL 33612-4799, USA
- b Oncological Sciences, H. Lee Moffitt Cancer Center, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 64, Tampa, FL 33612-4799, USA
- ^C University of South Florida College of Medicine, and Programs of Cancer Biology & Evolution, H. Lee Moffitt Cancer Center, 12901 Bruce B. Downs Blvd., MDC 64, Tampa, FL 33612-4799, USA
- ^d Chemical Biology and Molecular Medicine, University of South Florida, H. Lee Moffitt Cancer Center, 12901 Bruce B. Downs Blvd., MDC 64, Tampa, FL 33612-4799. USA

ARTICLE INFO

Article history: Received 15 July 2014 Received in revised form 29 October 2014 Accepted 4 November 2014 Available online 6 November 2014

Keywords: 1,25-Dihydroxyvitamin D₃ Omentum Vitamin D receptor Ovarian cancer Tumor invasion

ABSTRACT

Epithelial ovarian cancer (EOC) is the leading cause of gynecological cancer death in women, mainly because it has spread to intraperitoneal tissues such as the omentum in the peritoneal cavity by the time of diagnosis. In the present study, we established in vitro assays, ex vivo omental organ culture system and syngeneic animal tumor models using wild type (WT) and vitamin D receptor (VDR) null mice to investigate the effects of $1\alpha,25$ -dihydroxyvitamin D_3 (1,25 D_3) and VDR on EOC invasion. Treatment of human EOC cells with 1,25D3 suppressed their migration and invasion in monolayer scratch and transwell assays and ability to colonize the omentum in the ex vivo system, supporting a role for epithelial VDR in interfering with EOC invasion. Furthermore, VDR knockdown in OVCAR3 cells increased their ability to colonize the omentum in the ex vivo system in the absence of 1,25D₃, showing a potential ligand-independent suppression of EOC invasion by epithelial VDR. In syngeneic models, ID8 tumors exhibited an increased ability to colonize omenta of VDR null over that of WT mice; pre-treatment of WT, not VDR null, mice with EB1089 reduced ID8 colonization, revealing a role for stromal VDR in suppressing EOC invasion. These studies are the first to demonstrate a role for epithelial and stromal VDR in mediating the activity of 1,25D3 as well as a 1,25D₃-independent action of the VDR in suppressing EOC invasion. The data suggest that VDR-based drug discovery may lead to the development of new intervention strategies to improve the survival of patients with EOC at advanced stages.

This article is part of a Special Issue entitled "Vitamin D Workshop".

© 2014 Elsevier Ltd. All rights reserved.

Contents

1.	Introd	uction	139
2.	Mater	ials and methods	139
	2.1.	Cell culture and reagents	139
	2.2.	Stable transfections with luciferase and VDR short hairpin RNA (shRNA)	139
	2.3.	Migration and invasion assays	140
	2.4.	Animal breeding and maintenance	140
		Ex vivo co-culturing of mouse omenta with luciferase-marked human EOC cells	
	2.6.	In vivo tumor inoculation and bioluminescence imaging	140

E-mail address: wbai@health.usf.edu (W. Bai).

^{*} Corresponding author at: The Departments of Pathology and Cell Biology, University of South Florida, H. Lee Moffitt Cancer Center, 12901 Bruce B. Downs Blvd., MDC 64, Tampa, FL 33612-4799, USA. Tel.: +1 813 974 0563; fax: +1 813 974 5536.

	2.7. Haematoxylin and eosin (H&E) stain,	mmunoblotting and immunohistochemical analyses
	2.8. Statistical analyses	
3.	3. Results	
	3.1. Suppression of human and mous	EOC migration and invasion by 1,25D ₃ through epithelial VDR and its translation into in vivo140
	suppression of EOC omental invasion	n mice
	3.2. 1,25D ₃ -independent suppression of E	C omental invasion by the VDR in the epithelial cancer cells
	3.3. Suppression of EOC invasion by stron	al VDR in the omentum
	3.4. Suppression of EOC colonization to the	e omentum by EB1089 ?through the stromal VDR
4.	4. Discussion	
	Conflicts of interest	
		147
	References	

1. Introduction

EOC is the deadliest among all gynecologic cancers and causes more deaths than cervical and uterine cancers combined. Despite the overall advancement in cancer research and clinical development over recent decades, there has been little improvement in EOC mortality rates. The poor prognosis is mainly due to the disease reaching an advanced stage before it is discovered. Primary cytoreductive surgery followed by chemotherapy with cisplatin and paclitaxel is the standard treatment regimen for patients with advanced EOC, yielding high response rates and improving both short and medium-term survivals. However, most patients will eventually relapse and die of their cancer [32]. Intervention strategies that suppress EOC invasion would retain the cancer inside ovaries, allowing simple surgery to suffice as a cure.

Omentum is a sheet-like tissue attached to the greater curvature of the stomach. It is the most common site for EOC metastatic spread [19,20,36]. The spread happens rather quickly and, in 80% of EOC patients, the cancer usually has spread to this tissue at the time of diagnosis. The composition and function of omenta are similar between mice and human. They contain primarily adipose tissue and islands of compact immune cells called milky spots, which is a lymphoid organ controlling peritoneal cavity immune response [33]. A recent study has reported that omental adipocytes promote EOC metastasis by providing energy for rapid tumor growth [30]. Nevertheless, the mechanisms underlying EOC invasion into the omentum are largely unknown and key molecular events controlling the process remain to be defined.

1,25D₃ is a fat-soluble seco-steroid hormone best known for its role in calcium and phosphate homeostasis. Effects of 1,25D3 are mediated through the VDR that belongs to the steroid/thyroid hormone receptor superfamily [9,39]. In addition, 1,25D₃ and its analogs elicit anti-tumor effects in a wide variety of cancer cell types through the induction of cell death, cell cycle arrest, differentiation, angiogenesis, etc. [3,6,7,11,12,37,38,40,41,45], suggesting that 1,25D₃ holds great promise in cancer intervention. In EOC cells, 1,25D₃ causes cell cycle arrest at the G2/M transition through p53-independent induction of GADD45 [16]. Further studies have identified p27 as the key mediator of 1,25D₃-induced growth arrest in G1/S checkpoint [23] and defined a decrease in hTERT mRNA stability through microRNA as the mechanism underlying 1,25D₃-induced cell death [15,17]. However, a role for 1,25D₃ and VDR in EOC invasion and metastasis has not been investigated.

In the present studies, a series of experiments employing in vitro, ex vivo and in vivo EOC tumor models were conducted to assess the possible involvement of $1,25D_3$ and VDR in suppressing EOC invasion into the omentum. These studies have revealed a novel role for $1,25D_3$ in suppressing EOC invasion through both epithelial and stromal VDR. The findings suggest that VDR-

based drug discovery may lead to a new intervention strategy to improve the clinical outcomes of patients with advanced EOC.

2. Materials and methods

2.1. Cell culture and reagents

OVCAR3 human ovarian carcinoma cells (American Type Culture Collection, Manassas, VA) were cultured in RPMI 1640 medium supplemented with 15% calf serum (CS), 2 mM L-glutamine, 50 units/ml penicillin, 50 µg/ml streptomycin, 10 mM HEPES, 1 mM sodium pyruvate, 4.5 g/l glucose, 1.5 g/l sodium bicarbonate and 10 µg/ml bovine insulin. SKOV3-Luc cells, human ovarian carcinoma cell line, (Cell Biolabs, San Diego, CA) were maintained in DMEM containing 584 mg/l L-glutamine and 4.5 g/l glucose, supplemented with 5% CS, 100 units/ml penicillin, 100 μg/ml streptomycin and 500 µg/ml geneticin. ID8-VEGF murine ovarian cancer cells have been described elsewhere in detail [42]. The cells were generated by transfecting ID8 cells with a retroviral vector containing green fluorescent protein (GFP) and VEGF164, which accelerated tumor growth and ascites formation, significantly enhanced tumor angiogenesis, and substantially promoted the survival of tumor cells in vivo [35]. Cells were maintained in DMEM supplemented with 5% CS, 100 units/ml penicillin, and 100 μg/ml streptomycin.

1,25D₃ (calcitriol) was purchased from Calbiochem (La Jolla, CA). EB1089 (seocalcitol) was generously provided by Leo Pharmaceutical Products (Ballerup, Denmark). They were reconstituted in 100% ethanol (EtOH) and stored protected from light at $-20\,^{\circ}\text{C}$. All handling of 1,25D₃ and EB1089 was performed with indirect lighting.

2.2. Stable transfections with luciferase and VDR short hairpin RNA (shRNA)

To establish cells stably expressing luciferase, OVCAR3 and ID8-VEGF cells were transfected with 1 μg of pGL3-control plasmid (Promega, Madison, WI) using Lipofectamine 2000 (Invitrogen, Grand Island, NY) following the protocol from Invitrogen. Stable transfectants were established after selection in medium containing 400 $\mu g/ml$ (for OVCAR3-Luc) or 800 $\mu g/ml$ (for ID8-VEGF-Luc) G418 for a period of about 4 weeks.

For the establishment of OVCAR3 cells stably expressing control or VDR shRNA, cells were transfected with 2 µg of control pFIV-H1-Puro vector or shVDR [26] using Lipofectamine 2000 in 2 ml of Opti-MEM medium (Invitrogen, Grand Island, NY). 4h post transfections, the cell were re-plated in RPMI medium containing 10% CS and 2 μg/ml puromycin for 48 h. Cells were then split and placed at low density. Stable clones were achieved through selection with 2 µg/ml

Download English Version:

https://daneshyari.com/en/article/8338254

Download Persian Version:

https://daneshyari.com/article/8338254

Daneshyari.com