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A B S T R A C T

Genome-wide association studies have discovered many biologically important associations of genes with
phenotypes. Typically, genome-wide association analyses formally test the association of each genetic feature
(SNP, CNV, etc) with the phenotype of interest and summarize the results with multiplicity-adjusted p-values.
However, very small p-values only provide evidence against the null hypothesis of no association without in-
dicating which biological model best explains the observed data. Correctly identifying a specific biological model
may improve the scientific interpretation and can be used to more effectively select and design a follow-up
validation study. Thus, statistical methodology to identify the correct biological model for a particular genotype-
phenotype association can be very useful to investigators. Here, we propose a general statistical method to
summarize how accurately each of five biological models (null, additive, dominant, recessive, co-dominant)
represents the data observed for each variant in a GWAS study. We show that the new method stringently
controls the false discovery rate and asymptotically selects the correct biological model. Simulations of two-stage
discovery-validation studies show that the new method has these properties and that its validation power is
similar to or exceeds that of simple methods that use the same statistical model for all SNPs. Example analyses of
three data sets also highlight these advantages of the new method. An R package is freely available at www.
stjuderesearch.org/site/depts/biostats/maew.

1. Introduction

Genetic association studies have successfully identified single nu-
cleotide polymorphisms (SNPs) that are associated with complex
human diseases [1,2]. Traditionally, genetic association studies have
used p-values to identify potentially meaningful variants. Many statis-
tical methods have been developed to calculate p-values of the genetic
association studies and each method is preferred for a specific niche of
possible settings. For example, the Cochran-Armitage trend test (CATT)
is most powerful if the underlying genetic model is additive [3,4];
Pearson’s Chi-square test is robust to different genetic models but has
less statistical power than the CATT if the underlying model is additive
[5]; some entropy-based methods can be more powerful than the
Pearson’s Chi-square test [6]; and the set-valued based method has
power similar to or greater than that of CATT in some extreme situa-
tions such as small sample size or rare variants [7].

However, the p-value only measures evidence against the null hy-
pothesis but does not assist investigators in identifying a specific bio-
logical model [8]. For example, a very small p-value suggests that the
null model is false but does not indicate whether any specific genetic

model (additive, dominant, recessive, or co-dominant) is true. Correctly
identifying a specific genetic model will enhance biological inter-
pretation and can be used to select the most powerful statistical test for
a follow-up validation study from the same population. Thus, some
statistical methodology to identify the correct genetic model for a cer-
tain genotype-phenotype association can be very useful to investigators.

In this paper, we propose multiplicity-adjusted evidence weights
(MAEW) as a novel method to empirically select the most appropriate
genetic model from among five candidate models (null, additive,
dominant, recessive, and co-dominant) for each genetic variant. The
evidence weights are calculated based on the Bayesian Information
Criterion (BIC) and adjusted for multiple-testing by estimating the
empirical Bayesian probability (EBP) that the null hypothesis is true for
each genetic variant [9–13]. The method provides a readily inter-
pretable quantitative metric of the evidence supporting each of the five
genetic models for each variant, that stringently controls the false dis-
covery rate and asymptotically select the correct biological model.
Additionally, by selecting the most accurate biological model of the
data, our method, increases validation power in two-stage discovery-
validation studies. These properties can be observed in simulation
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studies and in our analysis of the GAW17, BEN and CSSCD data set.
The remainder of this paper is organized as follows. In Section 2, we

describe how to compute multiplicity adjusted evidence weights
(MAEW) in detail and some statistical properties, including false dis-
covery rate (FDR) control and asymptotic selection of the correct ge-
netic model. In Section 3, we observe that MAEW exhibits these prop-
erties in simulations of two-stage discovery-validation studies and in
replicates of split-set discovery validation analyses of three example
data sets. Section 4 provides discussion and concluding remarks.

2. Methods

We first introduce BIC and give the definition of MAEW. Then, we
give methods to compute MAEWs in genetic association studies. Next,
we show some properties and an application in discovery-validation
study.

2.1. BIC and evidence weights

BIC is a well-known statistical model selection criterion that mea-
sures how well a set of candidate models fit a set of data. Given a
collection of candidate models for the data, BIC estimates the goodness
of fit for each model relative to each of the other models.

Suppose that we have obtained phenotype data and genotype data
for each of = …l L1, , genetic loci. Also, assume that the association of
phenotype with genotype at each locus may be characterized by one of

= …m M0, 1, , candidate statistical models. We let =m 0 index the null
model and = …m M1, , index the other models under consideration.
For each locus l, we let Klm denote number of parameters for model m,
let nl denote the sample size and compute corresponding maximum
value Llm of the likelihood function of model m given genotype data at
locus l and phenotype data. For each locus and model, the BIC value ̂alm
is defined as

̂ = −a n K Lln( ) 2 ln( ).lm l lm lm (1)

Smaller values of the BIC indicate better model fit adjusted for
model complexity (number of parameters in the statistical model). Note
that for simplicity of notation, we omit the phenotype from the equa-
tions. The implicit dependency of the likelihood on the phenotype is
clear by context. Suppose the minimal value of BICs for a particular
locus l across all candidate models is ̂=∼a amin ( )l m lm . We then compute
the BIC difference Δlm and BIC evidence weight ωlm for locus l as
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The evidence weight ωlm can be considered as the weight of evi-
dence in favor of model m being the best model of the data of locus l
among the set of candidate models. By definition, evidence weights
satisfy the mathematical properties of probabilities (each evidence
weight is greater than or equal to zero, less than or equal to one, and the
sum of evidence weights across the models equals one at each locus),
although they do not strictly have the interpretation of probabilities.
We note that the BIC and evidence weight can also be computed for
models that involve many kinds of phenotypes (binary, quantitative,
survival) and account for environmental covariates, thus making the
methodology very generalizable.

This evidence weight procedure was originally developed to per-
form one model selection. Here, we wish to perform one model selec-
tion for each locus = …l L1, , . This multiplicity problem must be ad-
dressed. It is well-known that p-values must be adjusted for multiple-
testing. This is also the case for using BIC for genome-wide association
analyses. This is clearly seen in that the likelihood and p-value are
closely related (consider the likelihood ratio test for example) and the
BIC is directly a function of the likelihood as shown in Eq. (1). Thus, the
BIC also needs to be adjusted for multiplicity. As described below, we

will adapt a new procedure of empirical Bayesian probability (EBP)
estimation for that purpose.

2.2. Adjusting evidence weights for multiplicity

To adjust BIC evidence weights for multiplicity, we first formally
test the null hypothesis that each feature’s genotype is not associated
with phenotype. We use a hypothesis testing procedure designed to
detect the specific alternative that is considered of greatest interest or to
have the greatest statistical power for the greatest number of loci. For
example, it is common to use an additive model to test the association
of the phenotype with the genotype of each SNP. Another approach
may be to perform the test using a model with a non-specific alter-
native, such as the Kruskal-Wallis test or one-way ANOVA, which is
equivalent to testing for a co-dominant genetic model (Appendix A). In
either case, we obtain a p-value pl for each feature = …l L1, , .

Next, we develop and fit a likelihood-based adaptive histogram es-
timator (LB-AHE) to the set of p-values obtained above. The adaptive p-
value histogram estimator is an extension of a method developed by
Nettleton and colleagues that uses a p-value histogram to estimate the
proportion of tests with a true null [11–13]. Here, we use a novel
adaptive p-value histogram to compute an estimate ql of the empirical
Bayes probability (EBP) that the null hypothesis is true for locus l. In
this application, we use EBP instead of other multiple-testing correc-
tions because the probabilistic interpretation of EBP is most compatible
with our objective to compute meaningful evidence weights. The si-
milarities and differences between the EBP and the other false discovery
metrics have been described previously [14,15]. Briefly, the EBP tends
to be more conservative than Storey’s q-value [16] procedure and the
EBP has the large-sample property of correctly distinguishing between
the null and alternative hypothesis for every test. The detailed de-
scription of the p-value histogram estimator and EBP calculation are in
Appendix B.

For each locus l, we have an EBP estimate ql that the null hypothesis
is true and a set of unadjusted BIC evidence weights ωlm for each of a set
of candidate models = …m M0, , , where =m 0 indexes the null model.
Thus, we can define the multiplicity adjusted evidence weights
(MAEWs) for each locus l as
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where ql is the EBP estimate of the probability that the null hypothesis
is true when considering multiplicity.

The MAEW provides a richer interpretation of the data than does
multiplicity-adjusted p-values. Also, incorporating the EBP multiplicity
adjustment into the definition of MAEW in Eq. (3) ensures that com-
paring =∼ω ql l0 to a specific threshold τ provides the same control of the
false discovery rate at the level τ as does the method used to compute ql.
However, the MAEW provides more perspective. MAEW not only pro-
vides Type I error rate control but also quantifies the evidence in sup-
port of specific alternative statistical models that have a meaningful
biological interpretation. Observing ≈∼ω 1lm indicates that the data
overwhelmingly support genetic model m over all other genetic models
for locus l. Conversely, observing ≈∼ω 0lm indicates that the data do not
support genetic model m for locus l. This quantification is also useful to
better understand the biological processes underlying the association
and improve the power of validation studies that seek to confirm sig-
nificant results.

With this richer biological interpretation comes a more complex
characterization of errors than the classical setting with Type I or Type
II errors. As shown in Table 1, there are many types of errors that can be
incurred by a MAEW analysis that selects among five genetic models for
the genotype-phenotype association at each locus. In particular, for
each true genetic model, one may incorrectly select any of the four
remaining models. Thus, in our simulation studies below, we will
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