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a b s t r a c t

Prediction problems in biomedical sciences, including protein function prediction (PFP), are generally
quite difficult. This is due in part to incomplete knowledge of the cellular phenomenon of interest, the
appropriateness and data quality of the variables and measurements used for prediction, as well as a lack
of consensus regarding the ideal predictor for specific problems. In such scenarios, a powerful approach
to improving prediction performance is to construct heterogeneous ensemble predictors that combine
the output of diverse individual predictors that capture complementary aspects of the problems and/
or datasets. In this paper, we demonstrate the potential of such heterogeneous ensembles, derived from
stacking and ensemble selection methods, for addressing PFP and other similar biomedical prediction
problems. Deeper analysis of these results shows that the superior predictive ability of these methods,
especially stacking, can be attributed to their attention to the following aspects of the ensemble learning
process: (i) better balance of diversity and performance, (ii) more effective calibration of outputs and (iii)
more robust incorporation of additional base predictors. Finally, to make the effective application of
heterogeneous ensembles to large complex datasets (big data) feasible, we present DataSink, a distributed
ensemble learning framework, and demonstrate its sound scalability using the examined datasets.
DataSink is publicly available from https://github.com/shwhalen/datasink.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Prediction problems in biomedical sciences, including protein
function prediction (PFP) [41,52], are generally quite difficult. This
is due in part to incomplete knowledge of how the cellular phe-
nomenon of interest is influenced by the variables and measure-
ments used for prediction, as well as a lack of consensus
regarding the ideal predictor for specific problems. Even from a
data perspective, the frequent presence of extreme class imbal-
ance, missing values, heterogeneous data sources of different
scales, overlapping feature distributions, and measurement noise
further complicate prediction. Indeed, given these challenges, sev-
eral community-wide exercises, most notably CAFA [47] and Mou-
seFunc [44], have been organized to assess the state of the art in
PFP. The approaches used to participate in these exercises use a
variety of biological information, such as the amino acid sequence
and three-dimensional structure of proteins, as well as systems-

level data like gene expression and protein–protein interactions.
They also use a diverse array of prediction methodologies from
machine learning, statistics, network theory and others. Although
these exercises indicated general principles that can help enhance
PFP, they were generally unable to determine the best method for
this problem out of the participating approaches, partly due to
the problems listed above.

In scenarios like these, a powerful approach to improving pre-
diction performance is to construct ensemble predictors that com-
bine the output of individual predictors [49,51]. These predictors
have been immensely successful in producing accurate predictions
for many biomedical prediction tasks [62,1,33,28,42], including
protein function prediction [57,63,19]. The success of these meth-
ods is attributed to their ability to reinforce accurate predictions as
well as correct errors across many diverse base predictors [56].
Diversity among the base predictors is key to ensemble perfor-
mance: if there is complete consensus (no diversity) the ensemble
cannot outperform the best base predictor, yet an ensemble lack-
ing any consensus (highest diversity) is unlikely to perform well
due to weak base predictors. Successful ensemble methods strike
a balance between the diversity and accuracy of the ensemble
[29,14].

http://dx.doi.org/10.1016/j.ymeth.2015.08.016
1046-2023/� 2015 Elsevier Inc. All rights reserved.

⇑ Corresponding author at: Icahn Institute for Genomics and Multiscale Biology
and Department of Genetics and Genomic Sciences, Icahn School of Medicine at
Mount Sinai, New York, NY, USA.

E-mail addresses: shwhalen@gmail.com (S. Whalen), omprakash.pandey@mssm.
edu (O.P. Pandey), gaurav.pandey@mssm.edu (G. Pandey).

Methods xxx (2015) xxx–xxx

Contents lists available at ScienceDirect

Methods

journal homepage: www.elsevier .com/locate /ymeth

Please cite this article in press as: S. Whalen et al., Methods (2015), http://dx.doi.org/10.1016/j.ymeth.2015.08.016

http://https://github.com/shwhalen/datasink
http://dx.doi.org/10.1016/j.ymeth.2015.08.016
mailto:shwhalen@gmail.com
mailto:omprakash.pandey@mssm.edu
mailto:omprakash.pandey@mssm.edu
mailto:gaurav.pandey@mssm.edu
http://dx.doi.org/10.1016/j.ymeth.2015.08.016
http://www.sciencedirect.com/science/journal/10462023
http://www.elsevier.com/locate/ymeth
http://dx.doi.org/10.1016/j.ymeth.2015.08.016


A wide variety of methods have been proposed to create ensem-
bles consisting of diverse base predictors that benefit from both
their consensus and disagreement [49,51]. Popular methods like
bagging [6], boosting [50] and random forest [7] generate this
diversity by sampling from or assigning weights to training exam-
ples. However, they generally utilize a single type of base predictor
to build the ensemble. Such homogeneous ensembles may not be
the best choice for biomedical problems like PFP where the ideal
base prediction method is unclear, as discussed earlier. A more
potent approach in this scenario is to build ensembles from the
predictions of a wide variety of heterogeneous base prediction
methods, such as the predictions from a variety of PFP methods
submitted to CAFA [47].

Two commonly used heterogeneous ensemble methods include
a form of meta-learning called stacking [35,61], and the ensemble
selection method [10,9]. Stacking constructs a higher-level predic-
tive model over the predictions of base predictors, while ensemble
selection uses an iterative strategy to select base predictors for the
ensemble while balancing diversity and performance. Due to their
ability to utilize heterogeneous base predictors, these approaches
have produced superior performance across several application
domains [1,40].

In this paper, we present a comparative analysis of several
heterogeneous ensemble methods applied to large and diverse sets
of base predictors. This comparison is carried out in the context of
the prediction of protein function, as well as that of genetic inter-
actions [4,42], a problem intimately related to PFP. In addition to
assessing the overall performance of these methods on these prob-
lems, we will investigate the following critical aspects of heteroge-
neous ensembles that have not been investigated before:

1. How these methods try to achieve the diversity-performance
tradeoff inherent in ensemble learning.

2. The importance of base predictor calibration for effective
ensemble performance.

3. Dependence of heterogeneous ensemble performance on the
number and type of base predictors constituting them.

We explored the first two aspects in our previous work on this
problem [60]. Other than this work, there have been few, if any,
such analyses of ensembles constructed from such a large set of
diverse base predictors, and we expect our results will shed light
on the inner dynamics of ensemble predictors, especially heteroge-
neous ones. These insights are expected to have wide applicability
across diverse applications of ensemble learning beyond PFP.

Finally, we present DataSink, a scalable distributed implemen-
tation of the heterogeneous ensemble methods analyzed in this
study (available at https://github.com/shwhalen/datasink). This
implementation is built on the insight that efficient (nested)
cross-validation is critical for robust ensemble learning, and uti-
lizes several parallelization opportunities in this process to
enhance scalability. DataSink is implemented in Python and uses
Weka [20] for base predictor learning (unless they are provided,
such as in CAFA), and the pandas/scikit-learn analytics stack
[43,34] for ensemble construction. We illustrate how DataSink
can be used for PFP and other similar prediction problems, and
through this illustration, we demonstrate its scalability capabilities
and other salient features.

2. Materials and methods

2.1. Problem definitions and datasets

To assess the potential of heterogeneous ensembles for enhanc-
ing PFP, we assess their performance on three PFP instances. We

also evaluate their performance on the closely related problem of
prediction of genetic interactions.

2.1.1. Protein function prediction
Gene expression data are a commonly used data source for pre-

dicting protein function, as the simultaneous measurement of gene
expression across the entire genome enables effective inference of
functional relationships and annotations [41,52]. Thus, for the PFP
assessment, we use the gene expression compendium of [26] to
predict the functions of roughly 4000 baker’s yeast (Saccharomyces
cerevisiae) genes. The three most abundant functional labels (GO
terms) from the list of most biologically interesting and actionable
Gene Ontology Biological Process terms compiled by [38] are used
in our evaluation. These labels are GO:0051252 (regulation of RNA
metabolic process), GO:0006366 (transcription from RNA poly-
merase II promoter) and GO:0016192 (vesicle-mediated trans-
port). We refer to these prediction problems as PF1, PF2 and PF3
respectively (details in Table 1). Note that we demonstrate on only
these three large labels due to the substantial amount of computa-
tion needed even for a single label (detailed in subsequent sec-
tions), and hope to report much more extensive results in future
work. We expect the results presented here to be representative
and the methodology to be applicable to other (functional) labels
as well.

2.1.2. Genetic interaction prediction
Genetic interactions (GIs) are a category of cellular interactions

that are inferred by comparing the effect of the simultaneous
knockout of two genes with that of knocking them out individually
[21]. Since these interactions represent cases of functional buffer-
ing and inter-connections, their knowledge is very useful for
understanding cellular pathways and their interactions, and pre-
dicting gene function [23,4,27,37,36]. However, despite their util-
ity, and substantial progress in experimental mapping of GIs in
model organisms [23,12], there is a general paucity of GI data for
several organisms important for biomedical research. To address
this problem, some of us [42] and several others [4] have devel-
oped various computational approaches to predict GIs. In the cur-
rent study, we wish to assess how heterogeneous ensembles can
help advance this GI prediction effort. For this, we use the dataset
developed in our previous work [42], which focuses on predicting
GIs between genes from S. cerevisiae (baker’s yeast) using features
that denote functional relationships between gene pairs. Some
such features include correlation between expression profiles,
extent of co-evolution, and the presence or absence of physical
interactions between their corresponding proteins (see Table 2
for an illustration). This particular experiment enables us to assess
the predictive ability of heterogeneous ensembles on a problem
that is related but complementary to PFP, and the scalability of
our implementation DataSink, given the much larger size of this
dataset (Table 1).

Finally, note that both the types of datasets we considered
involve binary labels, so the results presented are in the classifica-
tion context. However, the concepts and methods discussed apply
to the general prediction scenario, such as multi-class and regres-

Table 1
Details of genetic interaction (GI) and protein function (PF) datasets, including the
number of features, number of examples in the minority (positive) and majority
(negative) classes, and total number of examples.

Problem #Features #Positives #Negatives #Total

GI 152 9994 125,509 135,503
PF1 300 382 3597 3979
PF2 300 344 3635 3979
PF3 300 327 3652 3979
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