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Fluorescence and bioluminescence time-lapse imaging allows to investigate a vast range of cellular pro-
cesses at single-cell or even subcellular resolution. In particular, time-lapse imaging can provide uniquely
detailed information on the fine kinetics of transcription, as well as on biological oscillations such as the
circadian and cell cycles. However, we face a paucity of automated methods to quantify time-lapse imag-
ing data with single-cell precision, notably throughout multiple cell cycles. We developed CAST (Cell
Automated Segmentation and Tracking platform) to automatically and robustly detect the position and
size of cells or nuclei, quantify the corresponding light signals, while taking into account both cell divi-
sions (lineage tracking) and migration events. We present here how CAST analyzes bioluminescence data
from a short-lived transcriptional luciferase reporter. However, our flexible and modular implementation
makes it easily adaptable to a wide variety of time-lapse recordings. We exemplify how CAST efficiently
quantifies single-cell gene expression over multiple cell cycles using mouse NIH3T3 culture cells with a
luminescence expression driven by the Bmall promoter, a central gene of the circadian oscillator. We fur-
ther illustrate how such data can be used to quantify transcriptional bursting in conditions of lengthened
circadian period, revealing thereby remarkably similar bursting signature compared to the endogenous
circadian condition despite marked period lengthening. In summary, we establish CAST as novel tool
for the efficient segmentation, signal quantification, and tracking of time-lapse images from mammalian
cell culture.

Keywords:

Time-lapse microscopy
Image analysis

Single-cell analysis
Quantitative transcription

© 2015 Published by Elsevier Inc.

1. Introduction

Improvements in microscopy techniques has enabled rapid pro-
gress in quantitative cell biology [1-7]. Notably in mammalian
cells, time-lapse imaging has provided unprecedented insights into
complex problems such as transcriptional bursting [8-11], cell
cycle transitions [12,13] and the circadian oscillator in individual
cells [14-17]. However, a current bottleneck is that accurate quan-
tification of time-lapse imaging data is typically slow, repetitive,
and requires a significant amount of human intervention
(reviewed in [18]). Therefore, versatile automated solutions to
robustly quantify temporal signals reflecting noisy biological pro-
cesses are needed. In particular, single-cell analysis typically
requires quantifying hundreds of individual expression traces to

Abbreviations: CAST, Cell Automated Segmentation and Tracking platform;
OME-TIFF, Open Microscopy Environment Tagged Image File Format; MAD, Median
Absolute Deviation; SNR, signal-to-noise ratio.
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overcome inherent stochasticity and gain statistical significance
[15,16,19,20]. However, both the segmentation, i.e. the recognition
of object in single frames, as well as the tracking, namely the link-
ing of objects corresponding to the same instance over consecutive
frames, are challenging computational tasks.

An intuitive and widespread method for localizing objects is to
determine a threshold value in the intensity of the image to sepa-
rate the signal from the background [21-23]. However, this
method is particularly sensitive to fluctuations often observed in
biological data, such as cell-to-cell variation, low signal images or
uneven illumination. Therefore, segmentation methods based on
thresholding are often used as an initial step that is refined by
other algorithms such as active contours [24], watersheds [25],
morphological operations [26-28], or machine learning methods
[29]. In addition, segmentation algorithms that use alternative
detection strategies were developed, including multi-scale wave-
lets [30], cross-correlations [31] or likelihood criteria [32].
Howbeit, the performances of each detection method is strongly
dependent on the type of data to be segmented, in particular for
images with low signal-to-noise ratio (SNR) or objects of varying
sizes (reviewed in [33]).
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After objects are localized in a sequence of time-lapse frames,
tracking them across frames is also a very challenging task, which
is often complicated by the motion, disappearance, fusion or split-
ting of the studied objects. Moreover, tracking suffers from a prob-
lem of combinatorial explosion in the number of potential
assignments that renders the identification of the global optimum
practically unfeasible for biological datasets. Different strategies
were developed to circumvent these problems such as fitting
Gaussian curves to object intensity values [34], wusing
cross-correlation of consecutive frames [35] or calculating the
probability of each set of assignment [36]. Alternatively, a number
of greedy algorithms avoid the aforementioned issues by solving
the frame-to-frame correspondence problem in a spatially global
fashion [37-40]. However, objective comparisons between these
methods concluded that these often need to be tailored to a partic-
ular problem, and typically require significant manual intervention
and curation [18,41-43]. An additional challenge occurs when the
signal intensity of an object drops below detectability during cer-
tain time intervals (e.g. during the cell cycle [44] or the circadian
cycle [14,15]), in which case the algorithm needs to recognize and
stitch the track over the resulting gaps. However, while this caveat
can be alleviated by using constitutively expressed reporters in
multi-channel fluorescent imaging (e.g. a nuclear or membrane
marker), this is not easily possible in bioluminescence imaging,
which typically permits the acquisition of only one channel.

In our ongoing work on single-cell transcription [8,9], we expe-
rienced that none of the available software tools providing imple-
mentations of such segmentation and tracking algorithms [45-56]
combine the level of accuracy and automation that we are aiming
for our bioluminescence data. Consequently, we set out to develop
CAST (Cell Automated Segmentation and Tracking platform), a
robust and automated image analysis algorithm for the segmenta-
tion, tracking and quantification of time-lapse recordings. To illus-
trate the potential of CAST, we analyze single-cell bioluminescence
reporters engineered to study transcriptional bursting, and demon-
strate how transcriptional fluctuations can be deciphered using
mathematical modeling to dissect the underlying transcription
process. Regardless of this particular application, CAST was con-
ceived in a highly modular fashion, so that its implementation is
versatile enough to be readily fitted to many recording configura-
tions, including fluorescence imaging.

2. Material and methods

CAST was developed as a set of custom MATLAB functions
accessed through user-friendly graphical interfaces (see Appendix
A). Importantly, while we here detail its applicability on biolumi-
nescence data, its modular implementation can be easily adapted
to the analysis of a wide variety of time-lapse data. CAST consists
of four main steps (described below) that are configurable, editable
and, once the corresponding parameters are manually tuned to the
specificity of the analyzed recording, fully automatized. Together,
these provide a robust way to track the reporter signals in mam-
malian culture cells using a single emission channel. All code is
freely available via the Github service (https://git.epfl.ch/repo/
cast.git).

2.1. Preprocessing of images

For maximal compatibility between the numerous existing
types of biological data, CAST starts by converting the time-lapse
recording to be analyzed to a standardized format (unsigned
16-bits OME-TIFF stacks, [57]). Three filtering steps can then be
applied to the resulting images. First, a background correction

can compensate for non-uniform illumination of the images. The
background is obtained, for each image of the recording indepen-
dently, by morphologically opening the raw image, smoothing it
using a Gaussian kernel, and least-squares fitting of a 2D quadratic
surface on the resulting intensities. Of note, the fitted background,
that is then subtracted to the raw image, is centered (i.e. has a
mean of zero) to remove trends from the image without altering
the range of values. Second, CAST can remove saturated pixels from
cosmic rays (useful for bioluminescence when long exposure times
are used) with a local histogram approach [58], using robust statis-
tics for the estimation of the location and scale (i.e. using the med-
ian instead of the mean and the spell out, MAD, instead of the
standard deviation). Thirdly, CAST can remove defective pixels by
detecting them as a signal varying more from the mean of the
whole image than a threshold defined times the standard devia-
tion. Finally, the entire stack of images can be normalized (i.e.
scaled) to compensate for variation between recordings. The result
of all these operations is then stored in a new image stack that is
used for all the subsequent steps of the analysis.

2.2. Image segmentation

The steps described below are optimized for detection of spher-
ical objects as typically encountered in bioluminescence imaging
(e.g. cells, nuclei or other organelles depending on the type of
reporters and image resolution), however, these steps can straight-
forwardly be adapted to segment different types of objects (e.g.
non-spherical). As the first step towards segmentation, a back-
ground subtraction (as described in 2.1) can be applied, here affect-
ing only this step of the analysis. Second, default de-noising is
performed by applying a Gaussian filter with a radius of 0.6 px
[59] and by subtracting the estimated mean of the uniform
Gaussian white noise, replacing the homogeneity analyzer pro-
posed in [60,61], which is utilized to identify the empty portions
of the image, by the Absolute Difference Mask (ADM) edge detector
[62]. Candidate object locations are then detected using the “a
trous” wavelet transform [30], followed by a filtering step in which
only single-pixel local maxima detections are kept. The biolumi-
nescence signal corresponding to each of the detected position is
then estimated by iterated least-square fitting of a 2D symmetric
Gaussian function (based on [63]). Spurious detections are then fil-
tered out using size and intensity thresholds (all thresholds come
with default values but can be changed by the user). Finally, over-
lapping cells are fused together. The position of the new cell sub-
stituting the fused objects is estimated using a weighted average
of their respective positions, each weight being proportional to
the integral of the corresponding signal intensity. The parameters
of the signal are then similarly computed by a weighted average
of the fused signals, using a Gaussian weighting kernel of their
respective distance to the averaged position.

2.3. Cell tracking

Tracking of cells is performed in CAST using a custom, more
memory efficient, implementation of an algorithm that solves both
the frame-to-frame linking of objects and the problem of assigning
trajectories globally using the Hungarian algorithm [40]. Our
implementation uses sparse matrices for the previously proposed
cost matrices to decrease the memory load of the algorithm, a
major bottleneck in the standard implementation, hence permit-
ting the efficient handling of a very large number of trajectories
(i.e. tested on more than 5000 trajectories). Thus, CAST can effi-
ciently handle the gap closing (i.e. linking similar objects that were
not segmented in some frames), merging and splitting steps
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