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a b s t r a c t

The production and degradation of RNA transcripts is inherently subject to biological noise that arises
from small gene copy numbers in individual cells. As a result, cellular RNA levels can exhibit large fluc-
tuations over time and from one cell to the next. This article presents a range of precise single-molecule
experimental techniques, based upon RNA fluorescence in situ hybridization, which can be used to mea-
sure the fluctuations of RNA at the single-cell level. A class of models for gene activation and deactivation
is postulated in order to capture complex stochastic effects of chromatin modifications or transcription
factor interactions. A computational tool, known as the finite state projection approach, is introduced
to accurately and efficiently analyze these models in order to predict how probability distributions of
RNA change over time in response to changing environmental conditions. These single-molecule exper-
iments, discrete stochastic models, and computational analyses are systematically integrated to identify
models of gene regulation dynamics. To illustrate the power and generality of our integrated experimen-
tal and computational approach, we explore cases that include different models for three different RNA
types (sRNA, mRNA and nascent RNA), three different experimental techniques and three different
biological species (bacteria, yeast and human cells).

� 2015 Published by Elsevier Inc.

1. Introduction

In recent years, advanced experimental techniques have
provided biologists with unprecedented abilities to probe and
observe the myriad parts of biological processes. Techniques such
as RNA sequencing, super-resolution fluorescent imaging, and
flow-cytometry have provided details of individual biological com-
ponents, even at single-cell and single-molecule resolutions [1–4].
Such detailed observations have largely out-paced our ability to
understand, interpret, predict or influence these processes. A key
contributor to the disconnect between the availability of
high-throughput biological data and quantitative, predictive bio-
logical understanding is the extremely complex and often random
nature of biological systems. Large numbers of chemical species all
interact in complex, non-linear networks to carry out even the

most basic biological tasks, such as transcription regulation.
Furthermore, inherent in any experimentally observed biological
system are several types of ‘‘noise’’, including intrinsic fluctuations
in cellular constituents, extrinsic heterogeneities between cells,
measurement inaccuracies, and inadvertent environmental fluctu-
ations. When these complex processes and unavoidable noise com-
bine together, the result may make it extremely difficult to match
or predict biological phenomena.

Mathematical modeling of biological systems can serve a vari-
ety of purposes, such that different models may satisfy different
goals. The goal of some models may be to create a comprehensive
representation of a biological process by compiling all known
understanding of that particular system [5,6]. While such models
are qualitative in nature, they can provide a complete picture of
how a particular system is currently understood to behave and
can be used to test broad qualitative hypotheses. Conversely, the
goal of conceptual models may be to capture a small part of larger
biological networks, or to reveal physical principles about how an
individual subsystem behaves in specific circumstances [7,8]. In
this article, we investigate a third goal of modeling: to quantita-
tively predict how a system will behave under experimental
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conditions. Where comprehensive models may be complex combi-
nations of hundreds of reactions and biophysical parameters, and
principle based models may be exceptionally simple, in optimally
predicting models, the complexity is dictated by existing quantita-
tive data and predictive goals [9]. Uncertainty from measurement
noise combined with highly complex biological systems may lead
to poor parameter identification and a resulting loss in predictive
power. Two questions naturally arise: how do the challenges pre-
sented by biological complexity restrict predictive modeling and
in what ways can emerging experimental approaches enable
improved predictive understanding?

The first such challenge of model identification is ‘‘model slop-
piness’’ – the notion that parameters are often poorly constrained,
especially in biological models [10]. For a given amount and type of
experimental data, only certain parameter combinations will be
well defined, leading to large regions of parameter uncertainty.
Moreover, addition of more data of the same type may fail to
reduce the parameter uncertainties. This diminishing return from
additional data motivates a need for enhanced experiments that
complement models or reduced models that complement the
available data. In some fortuitous cases, additional data may
already exist that has not yet been fully utilized. For example, fit-
ting deterministic models (i.e., sets of ordinary differential equa-
tions, or ODEs) to single-cell distributions may partially constrain
parameters, but often ignoring cell-to-cell heterogeneity may limit
success in model identification [11]. In other words, biochemical
noise, the fluctuations inherent to the biological process being
measured, may provide information inaccessible when measured
with bulk analyses (e.g., PCR or western blot analysis of RNA or
protein content) or when modeled by ODE analyses. By reducing
parameter uncertainty, it may become possible to constrain more
realistic models, and the errors associated with these predictions
may be reduced [9,12].

Several approaches have been suggested to utilize biochemical
fluctuations to improve parameter estimation for gene regulatory
circuits. These approaches have used many different types of
experimental data and computational analyses. Several studies
have examined regulation at the post-translational level, using flu-
orescent protein reporters combined with flow cytometry [12–16]
or time lapse fluorescence microscopy [17–21]. Others have exam-
ined regulation at the level of single mature RNA transcripts [9,22–
26] or at the level of active transcription sites [23,27]. Although
many studies have focussed on steady state responses [28,29],
others have explored how the variability of responses changes over
time or from one condition to another [9,30,31]. On the computa-
tional modeling side, several studies have used reduced order
expressions for parameter moments (i.e., the means and variances)
to characterize the variability of the single-cell responses in the
presence of intrinsic or extrinsic noise [16,26,32–35]. Other
approaches have used kinetic Monte Carlo simulations such as
the stochastic simulation algorithm (SSA, [36]) to generate many
simulated trajectories to represent the underlying biological sys-
tem [14,15,19]. Others have used approximate solutions of the infi-
nite dimensional linear equation known as the chemical master
equation to directly compare model predictions to measured
single-cell distributions [9,12,13,22]. These studies have been
applied to natural and synthetic gene regulatory circuits in bacteria
[12,13,16,22], yeast [9,19,33,25], and mammalian cells
[17,18,26,27,37].

In this article, we will review our approach to fit the full
time-varying distributions of a gene regulatory model to
single-molecule measurements of RNA at different times and
experimental conditions. In the following sections, we will intro-
duce the technique of single-molecule RNA fluorescence in situ
hybridization (smRNA-FISH [38,39]), which we have used to mea-
sure the number and location of RNA molecules in single cells. We

will also introduce the computational technique known as the
finite state projection (FSP, [40]) algorithm, which can be used to
predict the probability distributions of transient gene regulation
responses. We will illustrate the use of the smRNA-FISH and FSP
approaches to fit models and eventually predict the distributions
of RNA in single cells. Finally, we will explore three cases where
different models, different FSP analyses and different versions of
smRNA-FISH have been combined to explore the temporally
changing regulatory characteristics of (i) small RNA in bacteria
[22], (ii) serum-activated transcriptional responses in human cells
[27], and (iii) osmotic shock response genes in yeast [9].

2. Experimental methods

In order to take advantage of the information contained in
single-cell fluctuations, one must measure those fluctuations as
precisely as possible. Many recent studies have utilized single-cell
measurements of fluorescent protein (FP) markers of gene expres-
sion to establish and fit probability distributions at the protein level
[12,13,16,19]. One advantage of the FP-based approach is that it
allows for the tracking of individual cells over time using time lapse
fluorescence microscopy. Alternatively, one can use flow cytometry
to measure the FP distributions at specific snapshots in time, which
trades the ability to measure temporal correlations within individ-
ual cells for an ability to collect statistics of thousands of cells at
many points in time. Moreover, the use of FP has a few disadvan-
tages for the analysis of transcriptional responses. First, the use of
FP markers requires the genetic manipulation of cells to express a
FP marker for each gene of interest. Such modifications could
potentially disrupt the natural behavior of gene regulation or the
resulting mRNA dynamics. Second, measurement of FP markers in
a given cell yields an average fluorescence intensity for each cell,
which one must deconvolve from background fluorescence and cal-
ibrate against known standards in order to estimate absolute num-
bers of proteins. Third, the use of FP markers introduces additional
dynamics into the process, including processes of translation and
fluorescent protein folding and maturation. These processes can
add significant delays between the process of transcriptional regu-
lation and the downstream measurable FP signal [31,41]. For fast
transcriptional processes, such as stress responses that have time
scales on the order of a few minutes, a much faster assay is highly
beneficial [9,37].

One such assay that allows for absolute quantification of fast
endogenous transcriptional responses is the relatively recent tech-
nique of single-molecule fluorescent in situ hybridization
(smRNA-FISH, [38,39]). Fig. 1A illustrates the basic concept of
smRNA-FISH and Fig. 1B–D show three different variants of the
approach and images of these approaches applied to human, yeast
and bacterial cells. The smRNA-FISH technique was pioneered
many years ago using multi-labeled 50 nucleotide long single
strand DNA molecules [39] as shown in Fig. 1B (top). About a dec-
ade later, this technique was modified to use many single-labeled
20 nucleotide long single strand DNA probes [38] as illustrated in
Fig. 1C (top). The advantage of the larger number of smaller probes
is to increase the total number of probes on a target RNA while
reducing the background fluorescence emitted by unbound probes.
To build further on these advances in smRNA-FISH technology,
quencher probes as illustrated in Fig. 1D (top) were recently pro-
posed to reduce further the fluorescent signals from unbound
probes, reduce background fluorescence and improve
single-to-noise ratio [22]. As the background is reduced, smaller
‘‘true’’ signals can be detected, which is particular helpful for the
detection of short RNA transcripts. Each of these techniques have
been successfully applied to numerous organisms including
human-derived cells (Fig. 1B, bottom), yeast (Fig. 1C, bottom)

2 B. Munsky et al. / Methods xxx (2015) xxx–xxx

Please cite this article in press as: B. Munsky et al., Methods (2015), http://dx.doi.org/10.1016/j.ymeth.2015.06.009

http://dx.doi.org/10.1016/j.ymeth.2015.06.009


Download English Version:

https://daneshyari.com/en/article/8340563

Download Persian Version:

https://daneshyari.com/article/8340563

Daneshyari.com

https://daneshyari.com/en/article/8340563
https://daneshyari.com/article/8340563
https://daneshyari.com

