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a b s t r a c t

Single-cell experimental techniques provide informative data to help uncover dynamical processes inside
a cell. Making full use of such data requires dedicated computational methods to estimate biophysical
process parameters and states in a model-based manner. In particular, the treatment of heterogeneity
or cell-to-cell variability deserves special attention. The present article provides an introduction to one
particular class of algorithms which employ marginalization in order to take heterogeneity into account.
An overview of alternative approaches is provided for comparison. We treat two frequently encountered
scenarios in single-cell experiments, namely, single-cell trajectory data and single-cell distribution data.

� 2015 Published by Elsevier Inc.

1. Introduction

Single-cell techniques provide a more direct access to the inner
workings of a cell than classical bulk measurements. Although bulk
measurements are sometimes considered advantageous due to the
inherent averaging and filtering of unwanted fluctuations, it is
becoming increasingly clear that the actual mechanisms are
occluded by such averaging (see Fig. 1 for an illustrative example).

The mathematical basis for this observation is that the mean
behavior of the bulk can generally not be traced back to a single
mean mechanism (e.g., a mean threshold of a switch). Moreover,
even if such a mean mechanism exists, it would not give rise to
the mean behavior observed at the bulk due to the presence of non-
linearities. This discrepancy stems from the non-commutativity
between the averaging operation and the finite-time evolution
operator, due to the nonlinearity of the latter for almost all cases.
In particular, this even persists for perfectly linear reaction kinetics.

Experimental techniques for single-cell analysis advance
rapidly and provide data of increasing accuracy and dimensionality
[1]. For instance, while classical fluorescent-based flow cytometry
or FACS (fluorescence-activated cell sorting) is limited to a handful
of channels [2], mass cytometry [3] with rare-earth labeled anti-
bodies go to 50 and more simultaneous channels while attaining
comparable throughput in terms of number of cells. Although at
significantly lower throughput single-cell transcriptome analysis
by RNA-Seq [4] provides genome-wide estimates of RNA

abundances on the single-cell level. Specific RNAs can be counted
in fixed cells through fluorescence in situ hybridization (FISH)
[5,6], while RNA-labeling through bacterial coat proteins yields
information about transcription and RNA abundance of a specific
gene in living cells [7–9]. Techniques such as characterizing the
expression of a gene using fluorescent reporter proteins, fusion
proteins or luciferases share with all live-cell techniques that they
only provide low dimensional readouts. That is, similar to flow
cytometry they are restricted to a few channels. Live-cell tech-
niques however provide a qualitatively distinct feature in so much
that a single cell can be monitored over the course of time. Such
single-cell trajectory data contains temporal correlation on the
single-cell level that is otherwise not accessible. For instance, tech-
niques involving fixed cells, or flow cytometry based techniques
lack this correlative information. Note that this also applies to
live-cell flow cytometry protocols where the same cells are mea-
sured at successive time points because the cell identity is lost.

In this article, we give an overview of inference algorithms that
can extract the information contained in the results of the experi-
mental techniques described above. The term inference here refers
to the process of using information available to us in order to quan-
tify our state of knowledge about formulated hypotheses or
unknown parameters. Doing this in a systematic and principled
way involves various mathematical ideas. These have to be intro-
duced before we come to actual inference algorithms. We begin
by describing the mathematical models used for biomolecular reac-
tion networks, the biologically important notion of cell-to-cell vari-
ability, general aspects of Bayesian inference and the mathematical
modeling of measurement procedures in Section 2. The concept of
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marginalization, key to this article, is explained in Section 3. Actual
inference algorithms are described in Section 4.

We should state clearly that the goal of this article is not to give
a complete review of all available techniques. Instead, we focus on
methods which are able to deal with cell-to-cell variability, and do
so by employing the concept of marginalization. In this sense, the
selection of topics of this review is obviously biased towards the
work of some of the authors.

2. Models and problem statement

In this section preliminary concepts needed for the description
of inference algorithms are discussed. The mathematical models
that are commonly used for reaction networks are explained in
Section 2.1, and the modeling of heterogeneity in Section 2.2.
This is followed by a description of the experimental procedures
that we consider in Section 2.3. We explain the general principles
behind Bayesian inference, and how they relate to biomolecular
reaction kinetics, in Sections 2.4 and 2.5, and introduce the issue
of non-identifiability in Section 2.6. We begin with the mathemat-
ical models for biomolecular reaction processes.

2.1. Markovian population models

Throughout this review we consider a process abstraction that
operates on the intracellular population levels of involved molecu-
lar species and on their interaction in terms of biomolecular trans-
formations. Hence, we assume the absence of any truly spatial
effects for which spatial models such as Brownian dynamics would

be necessary [10,11]. Time invariant spatial arrangements of com-
partments for each of which the well-mixed assumption holds, can
however be modeled by such population models when augmented
by suitable transport reactions. Subsequently, we assume that the
process of interest involves D molecular species S1; . . . ;SD that
interact through R different reactions. The r-th reaction is
described by its stoichiometry

ur
1S1 þ . . .þ ur

DSD�!
cr v r

1S1 þ . . .þ v r
DSD; ð1Þ

where ur
d and v r

d denote the integer-valued stoichiometric substrate
and product coefficients, respectively, of the d-th species and cr is
the real-valued reaction rate constant. The stoichiometric change
vector mr � ðv r

1 � ur
1; . . . ;v r

D � ur
DÞ describes the net change in the

process state when the reaction occurs. Throughout this article,
we use a simple model of gene expression, given by

; �!c1 mRNA ðtranscriptionÞ
mRNA �!c2 mRNAþ P ðtranslationÞ
mRNA �!c3 ; ðmRNA degradationÞ
P �!c4 ; ðprotein degradationÞ

as a running example. Here we have two species and four reactions
with stoichiometric change vectors m1 ¼ ð1;0Þ; m2 ¼ ð0;1Þ; m3 ¼
ð�1;0Þ and m4 ¼ ð0;�1Þ, where we take the mRNA to be the first
species and the protein to be the second.

The inference algorithm and consequently, the result it returns,
depend on the way we translate those reactions into a mathemat-
ical model. Several such models are in common use in computa-
tional biology and can somewhat be organized into a hierarchy
(see Fig. 2), facilitating comparison and understanding. We begin
by describing the model at the top of the hierarchy, called a
continuous-time Markov chain (CTMC), instantiating a general
class of models that are defined on the discrete state-space of copy
numbers for all involved species. Accordingly, the state at time t of
the above reaction system, denoted by XðtÞ, is a vector of length D
with integer-valued entries that computes to

XðtÞ ¼ Xð0Þ þ
XR

r¼1

NrðtÞmr; ð2Þ

where NrðtÞ denotes the number of reactions of type r up to time t.
In our running example, we have XðtÞ ¼ ðX1ðtÞ;X2ðtÞÞ where X1 is
the abundance of mRNA and X2 the abundance of protein. For a
continuous-time Markov chain it moreover holds that at any given
time t with XðtÞ ¼ x, the probability of reaction r to occur in the time
interval between t and t þ Dt is approximately hrðcr ; xÞDt, for suffi-
ciently small Dt. Here hrðcr ; xÞ is the propensity or hazard of the
reaction, which is often assumed to be of the form crgrðxÞ, where
gr is some function of the current state x. In particular, the probabil-
ity of a reaction at any given time is independent of the history of
the process, as it only depends on the current state. This is the

Key notation

S intrinsic parameters.
Z extrinsic factors.
a extrinsic statistics.
mr stoichiometric change vector of reaction r.
hrðcr ; xÞ propensity of reaction r in state x.
XðtÞ process state at time t.
X½0;t� complete path of the process over the interval ½0; t�.

ym
n single-cell distribution measurement of the m-th cell at

the n-th time point.
xm

n underlying true state for single-cell distribution data.
ym

n single-cell trajectory measurement of the m-th cell at
the n-th time point.

xm
n underlying true state for single-cell trajectory data.
D complete set of measured data.

Fig. 1. Determining the dose response of a cell population. Cells respond to the
stimuli in a graded, homogeneous manner (left), in a homogeneous switch-like
manner (middle) or in a heterogeneous switch-like manner (right); while the actual
mechanism on the single-cell level is very different between left and right, the
difference cannot be detected in the dose–response curve of the bulk.
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