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a b s t r a c t

Rigorous statistical analysis of multimodal imaging datasets is challenging. Mass-univariate methods for
extracting correlations between image voxels and outcome measurements are not ideal for multimodal
datasets, as they do not account for interactions between the different modalities. The extremely high
dimensionality of medical images necessitates dimensionality reduction, such as principal component
analysis (PCA) or independent component analysis (ICA). These dimensionality reduction techniques,
however, consist of contributions from every region in the brain and are therefore difficult to interpret.
Recent advances in sparse dimensionality reduction have enabled construction of a set of image regions
that explain the variance of the images while still maintaining anatomical interpretability. The projec-
tions of the original data on the sparse eigenvectors, however, are highly collinear and therefore difficult
to incorporate into multi-modal image analysis pipelines. We propose here a method for clustering
sparse eigenvectors and selecting a subset of the eigenvectors to make interpretable predictions from
a multi-modal dataset. Evaluation on a publicly available dataset shows that the proposed method out-
performs PCA and ICA-based regressions while still maintaining anatomical meaning. To facilitate repro-
ducibility, the complete dataset used and all source code is publicly available.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Modern imaging datasets are increasingly multimodal. Virtually
all modern large-scale imaging studies, even those that concen-
trate on a given modality, such as resting state fMRI [1], include
a variety of imaging measures [2,3]. Although some groups have
reported improvements in classification accuracy in Alzheimer’s
Disease when using multimodal data [4], others have claimed that
multimodal classification does not tend to outperform a single
sensitive test [5]. This trend towards multimodal data presents
challenges in data processing, visualization, and statistical infer-
ence. In particular, the extremely high dimensionality of medical
imaging data presents challenges to classical linear model-based
statistical analyses, which assume that there are more subjects
than measured variables (n > p). Several approaches exist to deal
with the high-dimensional nature of medical imaging datasets.

1.1. Mass-univariate approaches

One of the most widely used methods to perform statistical
analyses on medical images is to use voxel-based morphometry
(VBM) [6]. VBM performs a statistical test on each voxel in the
image, producing a spatial map that describes how closely the val-
ues at a given voxel are correlated with an outcome measure. The
massive number of multiple comparisons conducted when using
VBM necessitate appropriate corrections [7]. In addition, because
brain function is spread over regions larger than a single voxel
[8], multivariate approaches are more naturally suited to leverag-
ing the spatially distributed information contained in medical
imaging data [9].

When examining multimodal data, univariate approaches are
further restricted because they do not provide insight into the rela-
tionships between the various modalities. One way of using uni-
variate approaches to analyze multimodal data is to perform
separate mass-univariate analyses on each modality and examine
the degree of spatial overlap between the resulting statistical maps
[10–12]. A drawback of this method is that spatial overlap alone
does not give insight into the subject-wise interactions or
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correlations of the various modalities. To take a somewhat extreme
example, if half the experimental population have increased corti-
cal thickness as compared to controls and the other half have
increased BOLD activation, a spatial map may show overlapping
significant areas, even though no individual subject actually has
increased cortical thickness and increased BOLD activation. To pro-
vide greater insight into the biological mechanisms underlying
observed changes, several studies have begun investigating multi-
variate approaches to multimodal data [11,13,14], looking at, for
example, the correlation between cortical thickness and BOLD acti-
vation in a given region.

One challenge of integrating large multimodal datasets is the
difficulty in visualizing and interpreting the results, especially
when performing multivariate analyses of data. Interpretation of
multivariate data is often made easier by sparse methods, which
ensure that only a small part of the data set is used for predicting
an outcome variable. Sparse methods have enjoyed a resurgence in
popularity in recent years, with several groups proposing sparse
methods tuned for neuroimaging data [15–24]. Applying sparse
techniques to multi-modal data enables specific and biologically
interpretable statements to be made about data; for example,
‘‘Decreased cortical thickness in the left parietal lobe is correlated
with decreased perfusion in the left and right parietal lobes, and
this network together predicts a decrease in verbal ability.’’

1.2. Data-driven dimensionality reduction

Many clinical studies using multimodal imaging data average
image values over predefined regions of interest (ROI’s) to reduce
the dimensionality of the data so that it will be more amenable
to standard statistical analyses. Although this approach may be
ideal if the ROI’s are already known and have anatomically mean-
ingful boundaries, this is not ideal for exploratory analyses which
have minimal prior knowledge. Traditionally, linear regression
from a high-dimensional dataset is performed after a dimensional-
ity reduction step, such as principal component analysis (PCA) [25].
However, PCA-derived eigenvectors have global support and there-
fore do not provide anatomical specificity. Sparse techniques can
provide more local specificity. In particular, a recently introduced
sparse dimensionality reduction technique, ‘‘eigenanatomy,’’ has
proven to provide greater power to detect group differences than
either voxel-based morphometry (VBM) [26] or pre-defined ROI’s
[27] while maintaining anatomical interpretability. Here, we
extend the eigenanatomy approach to a multi-modal setting.
Although the sparse eigenvectors are orthogonal in the image
space, orthogonality is not enforced on the low-dimensional coef-
ficients generated by projecting the imaging data onto the sparse
eigenvectors. Therefore, care must be taken to prevent excessive
collinearity among the predictor variables. We demonstrate that
even with collinearity in the predictor variables, our method of
extending eigenanatomy to multi-modal datasets produces a more
accurate prediction of age in a pediatric population than principal
component regression, independent component regression, or
regression on average values within regions defined by the AAL
atlas.

The eigenanatomy objective function is not new to this work.
Here, we focus on the practical challenges, including validation,
interpretation, and visualization of predictive models, involved in
multimodal data analysis, and demonstrate the advantages of the
eigenanatomy framework for multi-modal neuroimaging studies
as compared to either classical dimensionality reduction tech-
niques or predefined regions of interest (ROI’s). The release of all
data and code used to generate the paper will facilitate the use
of this technique as a template for future studies, as well as
encourage reproduction of similar evaluations with different
datasets.

2. Methods

2.1. Reproducibility

To facilitate the use of this study as a template for other multi-
modal population studies, we have attempted to make it as repro-
ducible as possible. All the data is available from an open-access
data repository. The paper itself is written using the R package
knitr [28], which facilitates on-the-fly production of figures from
data, enhancing reproducibility and documenting all data process-
ing steps. The full code for producing the paper, including raw data
and code for producing figures, is available from https://bitbuc-
ket.org/bkandel/multimodaleanat.

2.2. Dimensionality reduction techniques

Dimensionality reduction is a technique to reduce the complex-
ity of input data into a relatively small number of summary mea-
sures. Linear dimensionality techniques can be written as a
matrix factorization problem. We assume the input data is given
in an n� p input matrix X, where n is the number of observations
or subjects and p is the number of variables associated with each
observation. In the context of medical imaging, n typically ranges
from a few tens to a few hundred, and p is on the order of
103—106, depending on the size of images. Dimensionality reduc-
tion seeks to find a factorization of X into an n� k coefficient matrix
U and a p� k loading or eigenvector matrix V so that X � UVT. The
most well-established method for dimensionality reduction is
principal component analysis (PCA), which finds an orthogonal
matrix (i.e. VTV ¼ 1) that projects the input matrix to a lower-
dimensional subspace. More recently, independent component
analysis (ICA, e.g. [29]) has become widely used in the neuroimag-
ing community. ICA seeks a decomposition of X in which the com-
ponents are independent, which is a stronger condition than
orthogonality.

One drawback of standard PCA and ICA is that the eigenvectors
often cover the entire input matrix, meaning that each entry in the
coefficient matrix is a weighted average of all the voxels in the
image. This makes interpretation of the output difficult for two
related reasons. First, the lack of spatial specificity of the eigenvec-
tors makes it difficult to use the coefficients to investigate anatom-
ically-informed biological hypotheses. For example, it is impossible
to use the coefficients from a PCA decomposition to look at the
relation between left precuneal atrophy and age. In addition,
because the eigenvectors have both positive and negative compo-
nents, interpreting the weights in a linear regression model that
relates the coefficients to an outcome measure is not intuitive. This
is for two reasons. First, the PCA eigenvectors can contain negative
weights, even if the input data is strictly positive, as is the case in
cortical thickness, perfusion, and fractional anisotropy (FA) images.
If the weight of a given PCA coefficient in a linear model is positive
but the corresponding entry in the eigenvector is negative, it fol-
lows that an increase in the input matrix corresponds to a decrease
in the outcome variable. Second, this problem is compounded by
the overlapping nature of the eigenvectors: Because a given brain
region can contribute positively or negatively to each eigenvector,
it is very difficult to go back from the coefficient weights to the
biological meaning of the weight. Furthermore, interpreting the
eigenvectors themselves without accounting for the weights is
ill-advised [30], as the eigenvectors can be confounded by biases
in the data in non-obvious ways [31]. Therefore, although PCA
may be used for predicting age in unseen data, it is not as useful
for testing biological hypotheses.

Sparse dimensionality reduction techniques [32,33] deal with
the problems of global support of PCA eigenvectors by enforcing
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