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We constructed three-dimensional microvascular bifurcation models using a parent vessel of diameter 10 μm
and investigated the flow behavior of the red blood cells (RBCs) through bifurcations. We considered symmetric
and asymmetric model types. Two cases of equal daughter vessel diameter were employed for the asymmetric
models, where the first was 10 μm, which is the same as the parent vessel and the second was 7.94 μm, which
satisfies Murray's law. Simulated blood flow was computed using the lattice Boltzmann method in conjunction
with the immersed boundary method for incorporating fluid–membrane interactions between the flow field
and deformable RBCs. First, we investigated theflowbehavior of a single RBC throughmicrovascular bifurcations.
In the case of the symmetric bifurcation, the turning point of the fractional plasma flow wherein the RBC flow
changed from one daughter vessel to the other was 0.50. This turning point was however different for asymmet-
ric bifurcations. Additionally, we varied the initial offset of RBCs from the centerline of the parent vessel. The
simulation results indicated that the RBCs preferentially flow through the branch of a larger flow ratio. Next,
we investigated the distribution characteristics of multiple RBCs. Simulations indicated that the results of the
symmetric model were similar to those predicted by a previously published empirical model. On the other
hand, results of asymmetric models deviated from those of the symmetric and empirical models. These results
suggest that the distribution of RBCs varies according to the bifurcation angle and daughter vessel diameter in
a microvascular bifurcation of the size considered.

© 2014 Elsevier Inc. All rights reserved.

Introduction

Red blood cells (RBCs) occupy approximately 40–45% of the total
blood volume and are therefore the principal component of blood.
Hence, the rheological properties of RBCs have significant influence on
the microvascular flow when diameters of RBCs and vessels are of the
same order of magnitude (Goldsmith, 1986; Fung, 1997; Popel, 2005).
RBCs are biconcave disc-shaped and contain hemoglobin, which is an
oxygen-transporting protein, and exhibit a deformability that depends
on the enveloping of the cell membrane. A characteristic of deformable
RBCs is their axial concentration. The RBCs near the vessel wall migrate
to the axial center with deformation. As a result, a plasma layer forms
near the wall where no RBCs exist. The formation of a plasma layer
decreases the flow resistance and increases the flow velocity. Conse-
quently, the hematocrit of microcirculation, which is the volume fraction
of RBCs, decreaseswith decreasing vessel diameter, a phenomenon called
the Fåhræus effect.Moreover, the formation of the plasma layer leads to a
nonproportional distribution of RBCs and plasma at the bifurcation,
which can result in a complete absence of RBC flow passing through the

bifurcation. This phenomenon is called plasma skimming. As a result,
heterogeneity of oxygen in microvascular networks occurs. Therefore, it
is very important to investigate the flow behavior of RBCs inmicrovascu-
lar flows.

Several recent numerical studies have focused on the behaviors of
deformable RBCs in microvascular flows (Boryczko et al., 2003; Dupin
et al., 2007; Sugiyama et al., 2010; Zhao et al., 2010; Tsubota and
Wada, 2010; Imai et al., 2010; Alizadehred et al., 2012). Numerical stud-
ies on RBC aggregation (Liu et al., 2004; Liu and Liu, 2006; Zhang et al.,
2008, 2009) and low deformability (Zhang et al., 2009) in abnormal
RBC states have also been reported. RBC behaviors indicated in these
studies are well described by existing numerical techniques.

Other studies have investigated the distribution of cells at micro-
vascular bifurcation. Chien et al. (1985) experimentally investigated
the distribution of spherical and disk-shaped particles at a symmetric
T-bifurcation at low Reynolds number. Pries et al. (1990) examined
the plasma separation effect in vivo and proposed an empirical relation-
ship describing the distribution of RBC flows at microvascular bifurca-
tions. Several studies numerically investigated RBC motion, trajectories,
and partitioning through two-dimensional (2D) microvascular bifurca-
tion. (Hyakutake et al., 2006; Barber et al., 2008; Chesnutt and Marshall,
2009; Xiong and Zhang, 2012; Xu et al., 2012; Yin et al., 2013).
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Hyakutake et al. (2008) investigated flow behaviors of RBCs and
liposome-encapsulated hemoglobin at 2D microvascular bifurcations
using the lattice Boltzmann method (LBM) and clarified that the partial
replacement of RBCs by liposome-encapsulated hemoglobin reduces
the bias of oxygen flux. Moreover, an extension to a deformable RBC
model was conducted (Hyakutake et al., 2010). However, these studies
conducted simulations using 2D models, but there are no studies
employing a three-dimensional (3D) microvascular bifurcation model.
In this study, in order to demonstrate behaviors of flowing RBCs at a
microvascular bifurcation inmore detail, we constructed 3Dmicrovascu-
lar bifurcationmodels using a parent vessel of diameter 10 μmand inves-
tigated the effect of the bifurcation angle and shape on the distributions
of RBCs. These results provide valuable insights into the mechanism of
RBC behavior through microvascular bifurcations.

Numerical model and methods

Numerical model

For the present simulation, we constructed 3D microvascular bifur-
cation models and investigated flow behaviors of RBCs, especially
the distributions of RBCs. Fig. 1 shows schematics of microvascular

bifurcation models employed. We considered two types of models,
that is, a symmetric model (Model A) and asymmetric models (Models
B and C). In the case of Models A and B, diameters of the parent vessel
(Dp) and daughter vessels (D1 and D2) are 10 μm whereas, in the case
of Model C, Dp is 10 μm and D1 and D2 are both 7.94 μm, which satisfy
Murray's law. Figs. 1(a) and (b) illustrate Models A and C, respectively.
Table 1 lists the geometrical characteristics of Models A, B, and C. First, a
single RBC was placed in the center of the parent vessel, and we inves-
tigated distribution characteristics in the bifurcation. Next, we investi-
gated the case of multiple RBC flow. Single RBCs were arranged one by
one as time passed, and we investigated the relationship between the
flow and particle fluxes. The blood flow was computed using LBM in
conjunctionwith the immersed boundarymethod (IBM) for incorporat-
ing fluid–membrane interactions between the flow field and deform-
able RBCs. The RBC model used in the present 3D simulations is the
one based on our previous 2D study (Hyakutake et al., 2010).

Governing equation

In the present simulations, flows are computed by LBM (McNamara
and Zanetti, 1998; Succi, 2001). LBM is a relatively new and promising
numerical scheme for simulating complex flows and has attracted
much attention as an alternative approach to conventional Navier–
Stokes equations in computational fluid dynamics. Since LBM enables
simple handling of complex moving geometries, it is an effective tool
for analyzing multiphase fluid flows, such as those occurring in this
study.

The fluid modeled by LBM is composed of fictitious particles whose
velocities are restricted to a finite set of vectors. Since our study involves
a 3D issue, a 15-velocity model (Qian et al., 1992) is used in the follow-
ing calculations. The velocity vectors are defined as follows.

c1; c2; c3; c4; c5; c6; c7; c8; c9; c10; c11; c12; c13; c14; c15½ �

¼
0 1 0 0 −1 0 0 1 −1 1 1 −1 1 −1 −1
0 0 1 0 0 −1 0 1 1 −1 1 −1 −1 1 −1
0 0 0 1 0 0 −1 1 1 1 −1 −1 −1 −1 1

2
4

3
5

ð1Þ

The particle distribution function fi(x, t), whose velocity at point x
and time t, given by ci, evolves as

f i x þ cΔx; t þ Δtð Þ− f i x; tð Þ ¼ −1
τ

f i x; tð Þ− f i
eq x; tð Þ� �

for i ¼ 1;2;…;15; ð2Þ

where fieq(x, t) is the equilibriumdistribution function, τ is a single relax-
ation time, Δx is the lattice spacing, and Δt is the time step. The
Bhatnagar–Gross–Krook model (Bhatnagar et al., 1954) is used for the
collision term on the right hand side of Eq. (2). The following is a suit-
able equilibrium distribution function (Qian et al., 1992):

f i
eq ¼ Eiρ 1þ 3ci � uþ 9

2
ci � uð Þ2−3

2
u � u

� �
ð3Þ

where E1 = 2/9, Ei =1/9 (for i= 2, 3,… ,7) and Ei =1/72 (for i= 8, 9,
…, 15). The fluid density ρ and fluid velocity u given in Eq. (3) are calcu-
lated in terms of the particle distribution function as

ρ ¼
X15
i¼1

f i; u ¼ 1
ρ

X15
i¼1

f ici; ð4Þ

Fig. 1.We considered two types of models: a symmetric model, Model A (shown in (a)),
and asymmetric models, Model B and Model C (shown in (b)). In the case of Models A
and B, diameters of the parent vessel (Dp) and daughter vessels (D1 and D2) are 10 μm
whereas, in the case of Model C,Dp is 10 μmand D1 and D2 are both 7.94 μm, which satisfy
Murray's law. The total volumetric flow from the parent vessel (Qp) is divided into flows
Q1 and Q2 in the two daughter vessels b1 and b2, respectively.

Table 1
Bifurcation geometries and turning points for Models A, B, and C.

Model Bifurcation geometry Dp [μm] D1, D2 [μm] Turning point Q1/Qp

A Symmetric 10 10 0.50
B Asymmetric 10 10 0.57
C Asymmetric 10 7.94 0.61
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