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a b s t r a c t

Advances in single-cell RNA-sequencing have helped reveal the previously underappreciated level of
cellular heterogeneity present during cellular differentiation. A static snapshot of single-cell tran-
scriptomes provides a good representation of the various stages of differentiation as differentiation is
rarely synchronized between cells. Data from numerous single-cell analyses has suggested that cellular
differentiation and development can be conceptualized as continuous processes. Consequently,
computational algorithms have been developed to infer lineage relationships between cell types and
construct developmental trajectories along which cells are re-ordered such that similarity between
successive cell pairs is maximized. Here, we compare and contrast the existing computational methods,
and illustrate how they may be applied to build mouse myeloid progenitor lineages from massively
parallel RNA single-cell sequencing data.

© 2017 Published by Elsevier Ltd.

1. Introduction

Cellular differentiation and development is a temporal dy-
namic process whereby early progenitor cells develop into
terminally differentiated cells via multiple transitional stages. In
order to fully understand the kinetics of cellular differentiation,
the identity of the cell types present at different stages need to be
determined. Cells can be extracted at different stages and time
points of development for analysis, but cells are rarely perfectly
synchronized during differentiation. As such, cells sampled at the
same time point are often found in various differentiative states
(Trapnell et al., 2014a). Some developmental stages, however, can
be identified by the expression of unique cellular markers, such as
the various human hematopoietic stem and progenitor cells
including hematopoietic stem cells (CD45RA‾CD90þCD49fþ), multi-
potent progenitors (CD45RA‾CD90‾CD49f‾), multi-lymphoid
progenitors (CD45RAþCD10þCD7‾), common myeloid progenitors
(CD45RA‾CD135þCD10‾CD7‾) and etc" to "hematopoietic stem cells
( Lin�CD34þCD38�CD45RA�CD90þ), multi-potent progenitors (
Lin�CD34þCD38�CD45RA�CD90�), multi-lymphoid progenitors
( Lin�CD34þCD38�CD45RAþCD10þCD7þ), common myeloid
progenitors ( Lin�CD34þCD38þCD45RA�CD10�CD123int) and
etc where Lin� means lineage-negative (CD3�CD19�CD56

�CD14�CD16�CD66b�CD1c�CD303�CD141�) and etc (https://
www.ncbi.nlm.nih.gov/pubmed/28650480), and thus these
marker-specific cells can be isolated from the entire population.
Bulk samples isolated based on known marker expression are also
often a mixture of heterogeneous cells (Schlitzer et al., 2015; See
et al., 2017). Moreover, a number of studies performed at the
single-cell resolution have even suggested that every cell is unique
and different from each other (See et al., 2017; Junker and van
Oudenaarden, 2014). These findings pose new challenges on the
research of cellular differentiation and the underlying regulatory
events. Conventional bulk assays that use a time-point or marker-
based approach are inadequate at capturing the entire develop-
mental process as they underestimate cell-to-cell variability. Un-
fortunately, most of the current models for cellular differentiation
have been based on bulk assay-generated data and thus need to be
revised and complemented by new approaches (Doulatov et al.,
2012; Paul et al., 2015).

The advent of single-cell omic-based techniques has provided
new approaches to address the challenges in accurately delineating
cellular differentiation pathways. Single-cell genomics (Navin et al.,
2011; Wang et al., 2014; Behjati et al., 2014; Lodato et al., 2015;
Woodworth et al., 2017), epigenomics (Naumova et al., 2013),
transcriptomics (Trapnell et al., 2014a; Haghverdi et al., 2016), and
proteomics (Setty et al., 2016) have all recently been applied to help
reconstruct cell lineages. For instance, single-cell genome
sequencing has detected somatic mutations that may be used as
naturally occurring lineage markers for lineage tracking (Navin
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et al., 2011; Wang et al., 2014; Behjati et al., 2014; Lodato et al.,
2015; Woodworth et al., 2017). Somatic mutations, including ret-
rotransposons, copy-number variants, single-nucleotide variants
and microsatellites mark the progeny of the dividing parent cells.
Cells bearing these lineage marks can, therefore, be identified and
used to reconstruct cell genealogy (Navin et al., 2011; Wang et al.,
2014; Behjati et al., 2014; Lodato et al., 2015; Woodworth et al.,
2017). Lineage information can also be inferred from mRNA
expression analysis by single-cell RNA-sequencing (RNA-seq).
Single-cell RNA-seq has enabled an unbiased characterization of
heterogeneous cellular states during differentiation (Schlitzer et al.,
2015; See et al., 2017). More importantly, computational analysis of
single-cell transcriptomic data has suggested that the cellular
heterogeneity is not a disordered or chaotic process, as it may seem
(Trapnell et al., 2014a; Haghverdi et al., 2016). Cells in heteroge-
neous transcriptional states can be positioned in temporal order
along seemly continuous trajectories, and as such, cellular differ-
entiation can be conceptualized as a continuous process rather than
a series of discrete steps (Bendall et al., 2014; Buettner and Theis,
2012). As a result of developmental asynchrony, single cells
sampled at one time point will be found in various developmental
stages. If a sufficient number of single cells are sampled, one static
snapshot has the potential to capture all cellular states along the
entire developmental continuum. This continuous concept has
opened new opportunities for the development of computational
methods to construct developmental trajectories from single-cell
transcriptomic data.

2. Computational lineage construction

Innovative computational methods have been recently devel-
oped to infer developmental trajectories from single-cell tran-
scriptomic data (Trapnell et al., 2014a; Haghverdi et al., 2016; Setty
et al., 2016; Bendall et al., 2014; Buettner and Theis, 2012; Shin
et al., 2015; Marco et al., 2014; Xiaojie Qiu et al., 2017; Haghverdi
et al., 2015a; Angerer et al., 2016; Welch et al., 2016; Moignard
et al., 2015; Ji and Ji, 2016; Giecold et al., 2016; Chen et al., 2016;
Gong et al., 2017; Velten et al., 2017; Matsumoto and Kiryu, 2016;
Lonnberg et al., 2017; Campbell and Yau, 2017; Furchtgott et al.,
2017). The majority of these methods have been built on the
assumption that during cellular differentiation, transcriptional
changes are gradual and continuous. Based on this assumption, the
algorithms calculate distances or dissimilarities between cells and
re-order single cells along a continuum such that similar cells are
positioned next to each other in a successive fashion. These
computational methods involve several steps of analysis including
gene selection, dimension reduction, cluster analysis, pseudotime
inference, and branch detection which are briefly introduced as
follows.

Single-cell transcriptomic data is intrinsically noisy owing to the
low amount of starting material (mRNA), hence it is crucial to
perform proper gene selection prior to cell lineage construction.
Several existing methods utilize supervised gene selection, such as
differential expression analysis from bulk or single-cell tran-
scriptomic data. For instance, initial application of Monocle was
based on differentially expressed genes (DEG) detected from bulk
RNA-seq data (Trapnell et al., 2014b). Further applications using
various gene sets have shown that the performance of Monocle is
dependent on the genes used (Chen et al., 2016). NBOR (Schlitzer
et al., 2015) and Mpath (Chen et al., 2016) algorithms have also
utilized gene signatures derived from bulk transcriptomic data of
two classical dendritic cell (DC) lineages to infer lineage-
commitment of single DC precursor cells in mouse bone marrow.
However, supervised gene selection based on DEG analysis relies on
prior knowledge as well as data with known cell types or time

points. Unsupervised gene selection is therefore adopted as an
alternative approach. Most existing unsupervised gene selection
methods select genes that are highly variable and meanwhile
expressed at an adequate level to provide meaningful signals. For
example, Seurat (Macosko et al., 2015a) selects genes for which
average expression and dispersion are above user-specified
thresholds; Monocle (Trapnell et al., 2014b) fits a curve between
average expression and dispersion of genes, and selects genes that
are above the curve; SINGuLAR toolset makes use of principal
component analysis (PCA) to select genes with the highest PCA
loadings. BackSPIN (Zeisel et al., 2015) provides an unsupervised
gene selection mechanism based on a bi-clustering algorithm
which simultaneously optimizes clustering of genes and cells.
However, highly variable genes are representative of cellular het-
erogeneity but not necessarily associated with the underlying
cellular trajectories. Methods including Seurat (Macosko et al.,
2015a), Monocle (Trapnell et al., 2014b), SINGuLAR and BackSPIN
(Zeisel et al., 2015) select informative genes mainly for identifying
distinct clusters of cells, but not the temporal relationship between
cells. Intuitively, if a gene is involved in progression along a cellular
trajectory, the expression of this gene should change gradually
across neighboring cells along the trajectory; otherwise fluctuate in
a manner independent of the trajectory. Based on this intuition,
SLICER (Welch et al., 2016) method identifies genes likely involved
in sequential progression as those that exhibit more gradual vari-
ation across k nearest neighbor cells than at global scale. Although
these several gene selection approaches have been utilized for cell
lineage construction and pseudotime inference, the impact of gene
selection and the significance of various gene selection mecha-
nisms remain to be evaluated.

Single-cell RNA-seq measures expression of several thousand
genes per cell depending on cell type and sequencing depth. The
measured several thousand genes define a high-dimensional space
wherein each dimension is represented by the expression of one
gene. Individual cells distribute in this space and cell's position is
represented by its gene-expression vector. Assuming cellular dif-
ferentiation is a continuous process and successive cells along the
differentiation process have similar gene expression profiles, the
distribution of cells in the high-dimensional space is expected to
display a continuous structure or pattern. However, human vision is
good at recognizing patterns in low dimensions (<¼3), but cannot
perceive high-dimensional (>3) relationship. Data projection via
dimension reduction enables us to visualize high-dimensional data
for better understanding the underlying structure. Therefore a
number of cell lineage algorithms first project cells from the orig-
inal high-dimensional space onto a low-dimensional space using
dimension reduction approaches. The dimension reduction ap-
proaches are able to preserve the high-dimensional proximity
relationship between cells in the low dimensions, such that similar
cells in the original dimensions are positioned next to each other in
the reduced dimensions. Various dimension reduction approaches
have been utilized for single-cell data, including principal compo-
nent analysis (PCA), multi-dimensional scaling (MDS), independent
component analysis (ICA), diffusion map, reversed graph embed-
ding (RGE), locally linear embedding (LLE), Gaussian Process Latent
Variable Model (GPLVM) and etc. The most frequently used
dimension reduction approach; principal component analysis
(PCA) projects individual cells into a latent space spanned by
principal components which represent the directions of the largest
variance. The projection is linear as the coordinates of cells in the
low-dimensional latent space are a weighted sum of the co-
ordinates in the original high-dimensional space. PCA applied to
single-cell transcriptomic data of stimulated dendritic cells (DCs)
showed that DCs spread along a continuum of expression variation
in each principal component (Shalek et al., 2014). The continuum
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