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A B S T R A C T

Nutrient sensingmechanisms of carbohydrates, amino acids and lipids operate distinct path-
ways that are essential for the adaptation to varying metabolic conditions. The role of
nutrient-induced biosynthesis of hormones is paramount for attaining metabolic homeo-
stasis in the organism. Nutrient overload attenuate key metabolic cellular functions and
interfere with hormonal-regulated inter- and intra-organ communication, which may ul-
timately lead to metabolic derangements. Hyperglycemia and high levels of saturated free
fatty acids induce excessive production of oxygen free radicals in tissues and cells. This phe-
nomenon, which is accentuated in both type-1 and type-2 diabetic patients, has been
associated with the development of impaired glucose tolerance and the etiology of pe-
ripheral complications. However, low levels of the same free radicals also induce hormetic
responses that protect cells against deleterious effects of the same radicals. Of interest is
the role of hydroxyl radicals in initiating peroxidation of polyunsaturated fatty acids (PUFA)
and generation of α,β-unsaturated reactive 4-hydroxyalkenals that avidly form covalent
adducts with nucleophilic moieties in proteins, phospholipids and nucleic acids. Numer-
ous studies have linked the lipid peroxidation product 4-hydroxy-2E-nonenal (4-HNE) to
different pathological and cytotoxic processes. Similarly, two other members of the family,
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4-hydroxyl-2E-hexenal (4-HHE) and 4-hydroxy-2E,6Z-dodecadienal (4-HDDE), have also
been identified as potential cytotoxic agents. It has been suggested that 4-HNE-induced
modifications in macromolecules in cells may alter their cellular functions and modify
signaling properties. Yet, it has also been acknowledged that these bioactive aldehydes also
function as signaling molecules that directly modify cell functions in a hormetic fashion
to enable cells adapt to various stressful stimuli. Recent studies have shown that 4-HNE
and 4-HDDE, which activate peroxisome proliferator-activated receptor δ (PPARδ) in vascular
endothelial cells and insulin secreting beta cells, promote such adaptive responses to
ameliorate detrimental effects of high glucose and diabetes-like conditions. In addition, due
to the electrophilic nature of these reactive aldehydes they form covalent adducts with
electronegative moieties in proteins, phosphatidylethanolamine and nucleotides. Normally
these non-enzymatic modifications aremaintained below the cytotoxic range due to efficient
cellular neutralization processes of 4-hydroxyalkenals. The major neutralizing enzymes
include fatty aldehyde dehydrogenase (FALDH), aldose reductase (AR) and alcohol
dehydrogenase (ADH), which transform the aldehyde to the corresponding carboxylic acid
or alcohols, respectively, or by biding to the thiol group in glutathione (GSH) by the action
of glutathione-S-transferase (GST). This review describes the hormetic and cytotoxic roles
of oxygen free radicals and 4-hydroxyalkenals in beta cells exposed to nutritional challenges
and the cellular mechanisms they employ to maintain their level at functional range below
the cytotoxic threshold.
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1. Introduction

Fatty acidmetabolism inmammalian cells is complex and
serves four main aims: first, for the biosynthesis of phos-
pholipids andmembrane biogenesis by the formation of the
lipid bilayer permeability barrier of cell and intracellular or-
ganelle membranes; second, to serve as an ample source
for ATP production via beta oxidation and Krebs cycle; third,
to provide numerous lipid mediators that regulate myriad
cell functions by acting as signaling molecules that acti-
vate receptors in a selective and specific manner; fourth for
storage in adipose tissues in the form of triglycerides (Fig. 1).
Mammalian cells synthesize saturated fatty acids by the
action of acetyl-CoA carboxylase and fatty acid synthase and

further generate different monounsaturated fatty acids
(MUFA) by the action of target-specific desaturases and
elongases. In contrast, linoleic acid and alpha-linolenic acid
that are supplied from the diet (hence termed ‘essential fatty
acids’) serve as precursors for the biosynthesis of n-3 and
n-6 polyunsaturated fatty acids (PUFA) by a series of tar-
geted desaturation and elongation reactions. Collectively,
these varied pathways not only determine the cell’s spe-
cific lipid composition but also contribute to lipid
homeostasis in the organism.

Metabolic stressful conditions such as hyperglycemia and
hyperlipidemia, which are common in diabetes, can mod-
ulate and modify fatty acid metabolism, membrane lipid
composition and alter the generation of lipid mediators and
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