FISEVIER

Contents lists available at ScienceDirect

Molecular Aspects of Medicine

journal homepage: www.elsevier.com/locate/mam

Review

Role of genetics in diagnosis and therapy of acquired liver disease

Vincent Zimmer*, Frank Lammert

Department of Medicine II, Saarland University Medical Center, Homburg, Germany

ARTICLE INFO

Article history: Available online 25 October 2013

Keywords:
ABC transporter
Cholelithiasis
Cholestasis
Epistasis
Genome-wide association studies

ABSTRACT

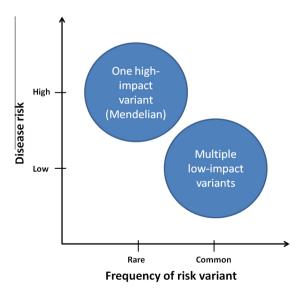
By implementation of novel genotyping technologies, progress in delineating the genetic architecture of acquired liver diseases has been achieved in recent years. The rapid dissemination of genome-wide linkage and association studies has paved the way for the identification of genetic variants that cause or modify non-viral liver diseases as well as the natural and treatment-related outcomes in chronic viral hepatitis. Invaluable genomic data has recently been derived from additional genome-wide association studies (GWAS) of the archetypical cholestatic liver diseases primary sclerosing cholangitis (PSC) and primary biliary cirrhosis (PBC). Beyond providing novel pathobiological insights in need of more sophisticated functional annotation, gene variation might in the future be instrumental in precise risk stratification and the development of genotype-based treatment algorithms. In this regard, the definition of subtypes of acquired liver disease and re-categorization of clinically defined disease phenotypes into a more 'genometype'-based disease classification represents a priority future research direction.

© 2013 Elsevier Ltd. All rights reserved.

Contents

1.	Introd	luction: Genomics in the GWAS era and beyond	16
2.	Modif	ier genes in viral hepatitis	17
	2.1.	Functional annotation of the IL28B locus.	18
	2.2.	IL28B in the direct antiviral agent (DAA) era	18
	2.3.	Variation of the hepatocanalicular bile salt transporter BSEP and chronic HCV infection	19
	2.4.	Genetic determinants of chronic HBV infection	19
	2.5.	Genomics of viral hepatitis-associated hepatocellular carcinoma	19
3.	Susce	ptibility genes for drug-induced cholestasis	20
	3.1.	DILI: new focus on the HLA locus and immune-mediated mechanisms	20
4.	The g	enetic architecture of cholestatic liver disease	21
	4.1.	Primary sclerosing cholangitis	21
	4.2.	The hepatocanalicular phosphatidylcholin transporter ABCB4 in PSC	21
	4.3.	Immunity-related genetic risk factors in PSC and beyond	21
	4.4.	The biliary microbiome in PSC	22
	4.5.	PSC-related fibrogenesis	22
	4.6.	PSC-associated malignant biliary tract disease	22
	4.7.	Primary biliary cirrhosis	23

E-mail addresses: vincent.zimmer@uks.eu (V. Zimmer), frank.lammert@uks.eu (F. Lammert).


^{*} Corresponding author. Address: Department of Medicine II, Saarland University Medical Center, 66421 Homburg, Germany. Tel.: +49 6841 1623205; fax: +49 6841 1621305.

	4.8. GWAS findings in PBC		23
	4.9. Other candidates in PBC genomics		24
5.	5. The genetic determinants of gallstone disease		24
	5.1. The ABCB8 risk locus in gallstone disease		24
	5.2. The Gilbert syndrome variant (<i>UGT1A1</i>) in gallstone formation		25
	5.3. Hepatobiliary transporter variation in GSD susceptibility – a window to novel interventi	ons	25
6.	6. PNPLA3: from fatty liver disease to hepatocellular carcinoma		26
	6.1. First GWAS in fatty liver identifies PNPLA3 as major genetic determinant		26
	6.2. PNPLA3 beyond non-alcoholic fatty liver disease		26
	6.3. PNPLA3 research: advanced in clinical studies, lagging behind in the laboratory		26
7.	7. Outlook		
	References		27

1. Introduction: Genomics in the GWAS era and beyond

In recent years, the accumulation of genomic information on disease susceptibility and progression has gained unprecedented momentum. The initial molecular genetic analyses focused on the identification of penetrant mutations underlying rare monogenic diseases (Mendelian traits) in individual patients or small groups of affected individuals, providing important advances into the pathobiological understanding of different hereditary liver diseases such as Wilson disease, haemochromatosis, and progressive familial intrahepatic cholestasis (PFIC types I-III). By contrast, the heritability of common (complex) liver diseases are not related to single-gene alterations but rather to a multitude of low-impact gene variants (odds ratios typically < 1.5), fine-tuned by gene-gene interactions (epistasis) and environmental factors and their complex higher order interactions (Fig. 1). The full-scale delineation of human sequence variation by the Human Genome Project and the International Hap Map Project and the recent refinements by the Personal Genome Project and the 1000 Genomes Project has laid a sound foundation for the rapid dissemination of ever-increasing genetic information related to complex human traits and diseases (Abecasis et al., 2012). Accompanied by the plummeting costs, technological sophistication and broader accessibility of genotyping platforms, comprehensive mapping of genetic markers underlying acquired liver diseases by GWAS in large informative patient cohorts has become a reality in recent years (Krawczyk et al., 2010). By implementation of high-throughput platforms this unbiased, hypothesis-free approach renders scanning hundreds of thousands of singlenucleotide variants (SNVs) causing and/or modifying diseases across the whole genome feasible (Zimmer and Lammert, 2011b). This has been applied to various complex liver diseases, such as viral hepatitis, gallstone disease, non-alcoholic fatty liver disease (NAFLD) as well as cholestatic liver diseases (PBC, PSC), providing important novel pathobiological insights and information on genetic risk assessment for these diseases.

However, despite these major achievements of the GWAS approach there is still a substantial fraction of 'missing heritability' unaccounted for, which has been explained by incomplete tagging SNP coverage ('array blind spots'), rare variants

Fig. 1. Genetic risk model underlying categorization as rare (monogenic) and common (multifactorial) diseases. The inverse correlation between the frequency of disease susceptibility variants and the magnitude of their phenotypic impact (typically expressed as odds ratio, OR). In contrast to rare genetic diseases with causative mutations, there are multiple low-impact variants underlying common diseases ('common disease – common variant' concept).

Download English Version:

https://daneshyari.com/en/article/8341471

Download Persian Version:

https://daneshyari.com/article/8341471

<u>Daneshyari.com</u>