Mucopolysaccharidosis IVA: Correlation between genotype, phenotype and keratan sulfate levels

Vũ Chí Dũng ${ }^{\mathrm{a}, 1}$, Shunji Tomatsu ${ }^{\mathrm{a}, *, 1,2}$, Adriana M. Montaño ${ }^{\mathrm{c}}$, Gary Gottesman ${ }^{\mathrm{c}}$, Michael B. Bober ${ }^{\mathrm{b}}$, William Mackenzie ${ }^{\text {b }}$, Miho Maeda ${ }^{\text {b }}$, Grant A. Mitchell ${ }^{\text {d }}$, Yasuyuki Suzuki ${ }^{e}$, Tadao Orii ${ }^{\text {f }}$
${ }^{a}$ Department of Endocrinology, Metabolism \& Genetics, Vietnam National Hospital of Pediatrics, Hanoi, Viet Nam
${ }^{\text {b }}$ Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
${ }^{\text {c }}$ Department of Pediatrics, Saint Louis University, St. Louis, MO, USA
${ }^{\text {d }}$ CHU Sainte-Justine, Service de génétique médicale, 3175 Côte-Ste-Catherine Montréal, Québec H3T 1C5, Canada
${ }^{e}$ Medical Education Development Center (MEDC), Gifu University School of Medicine, Japan
${ }^{\mathrm{f}}$ Department of Pediatrics, Gifu University, School of Medicine, Gifu, Japan

A R T I C L E I N F O

Article history:

Received 12 April 2013
Received in revised form 10 June 2013
Accepted 10 June 2013
Available online 26 June 2013

Keywords:

Mucopolysaccharidosis IVA
Genotype
Phenotype
Biomarker
Keratan sulfate

Abstract

Mucopolysaccharidosis IVA (MPS IVA) is caused by deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS), leading to systemic skeletal dysplasia because of excessive storage of keratan sulfate (KS) in chondrocytes. In an effort to determine a precise prognosis and personalized treatment, we aim to characterize clinical, biochemical, and molecular findings in MPS IVA patients, and to seek correlations between genotype, phenotype, and blood and urine KS levels. Mutation screening of GALNS gene was performed in 55 MPS IVA patients (severe: 36 , attenuated: 13 , undefined: 6) by genomic PCR followed by direct sequence analysis. Plasma and urine KS levels were measured by ELISA method. Genotype/phenotype/KS correlations were assessed when data were available. Fifty-three different mutations including 19 novel ones (41 missense, 2 nonsense, 4 small deletions, 1 insertion, and 5 splice-site) were identified in 55 patients and accounted for 93.6% of the analyzed mutant alleles. Thirty-nine mutations were associated with a severe phenotype and ten mutations with an attenuated one. Blood and urine KS concentrations in MPS IVA patients were age-dependent and markedly higher than those in age-matched normal controls. Plasma and urine KS levels in MPS IVA patients with the severe phenotype were higher than in those with an attenuated form. This study provides evidence for extensive allelic heterogeneity of MPS IVA. Accumulation of mutations as well as clinical descriptions and KS levels allows us to predict clinical severity more precisely and should be used for evaluation of responses to potential treatment options.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Mucopolysaccharidosis IVA (MPS IVA, Morquio A disease; OMIM\# 253000) is an autosomal recessive lysosomal storage disorder (LSD) characterized by a loss of activity of the N -acetylgalactosamine 6 -sulfate sulfatase (GALNS) enzyme. The estimated incidence of

[^0]Morquio A disease varies widely between 1 in 75,000 to 500,000 births [1-8].

Deficiency of GALNS results in a build-up of the glycosaminoglycans (GAGs), keratan sulfate (KS), and chondroitin-6-sulfate (C6S) in lysosomes throughout the body, but specifically in the cartilage and cornea, where KS is synthesized. In MPS IVA, the degradation of KS is defective. KS is predominantly found in cartilage and cornea, the major organs affected in MPS IVA. The specific mechanism, by which excess storage of KS results in the skeletal dysplasia unique to MPS IVA, remains unknown.

The most widespread pathological findings are related to a systemic skeletal dysplasia including short trunk dwarfism, kyphoscoliosis, platyspondyly, odontoid hypoplasia, genu valgum, pectus carinatum, and dental anomalies. Other findings include characteristic ligamentous laxity, corneal clouding, coarse facies, hearing loss, and valvular heart disease. Unlike other MPS disorders, there is no central nervous system involvement and intelligence is preserved [9]. There is variable severity, but patients with severe phenotype usually do not survive past the second or third decade of life. Patients with the attenuated form of MPS IVA have been reported to survive into the seventh decade of life [10]. Based
on a natural history study by the International Registry program [9], around 50% of the subjects underwent orthopedic surgical procedures. The patients with more severe short stature and those who underwent surgical procedures were reported to have more difficulties ambulating. The current clinical criteria establish that reduced growth and final height are associated with a more severe clinical phenotype.

The GALNS gene, located on chromosome 16q24.3, contains 14 exons spanning 50 kb and encodes a 522-amino acid protein, including a signal peptide of 26 residues [11,12]. GALNS has been purified from human placenta as an oligomer of 40 and 15 kDa polypeptides [13], with the oligomers inter-linked by disulphide bonding. Mature human GALNS enzyme is stabilized in a complex with two other

Table 1
Characterization of MPS IVA patients in this study.

M0	Sex	Phenotype	Age tested for height and weight (years)	Present height (cm)	Percentile in Morquio patients	Present weight (kg)	Percentile in Morquio patients	Age onset	Age diagnosis	Growth arrest	Orthopedic Surgery	1st allele: Nucleotide change	2nd allele: Nucleotide change	Ethnicity
MO 58	M	undefined	8.0	NA		NA		NA	NA	NA	NA	c.1023C>G	undefined	SL
MO 59	F	undefined	6.0	NA		NA		NA	NA	NA	NA	c. $1023 \mathrm{C}>\mathrm{G}$	undefined	SL
MO 100	M	severe	9.9	98.4	$\leqq 25$ th	15.9	§10th	0.5	0.6	no	+	c.853_855delTTC	undefined	$\mathrm{Am}-\mathrm{Ca}(\mathrm{Br} / \mathrm{Ge} / \mathrm{Pt})$
MO 101	M	attenuated	12.0	127	$\geqq 75$ th	38.6	$\geqq 90$ th	5	5	no	-	c. $758 \mathrm{G}>\mathrm{A}$	c. $922 \mathrm{~T}>\mathrm{C}$	$\mathrm{Am}-\mathrm{Ca}$ (Al)
MO 104	M	attenuated	24.0	127	≥ 75 th	52.5	≥ 75 th	1	2	yes	-	c. $121 \mathrm{~A}>\mathrm{T}$	c. $121 \mathrm{~A}>\mathrm{T}$	Am-Ca (Fr)
MO 105	F	severe	13.0	102	$\leqq 50$ th	21	$\leqq 50$ th	0.5	6	yes	+	c. $898+1 \mathrm{G}>\mathrm{A}$	c.121-1G>C	Uk
MO 106	M	attenuated	13.0	150	$\geqq 90$ th	45	\geqq 90th	5.5	6.4	no	-	c. $320-1 \mathrm{G}>\mathrm{T}$	undefined	Chil
MO 107	F	attenuated	18.0	120	$\geqq 75$ th	31.8	§ 75th	4	4.5	yes	+	c. $1354 \mathrm{~T}>\mathrm{A}$	c.1485C>G	Ca-Ca (Ir/En)
MO 109	M	severe	13.0	116	$\leqq 75$ th	24.5	$\leqq 50$ th	1	3	yes	+	c. $415 \mathrm{G}>\mathrm{A}$	c. $1219 \mathrm{~A}>\mathrm{C}$	Am-Bl, Am-Ca
MO 110	M	severe	12.5	105	$\leqq 50$ th	19.85	$\leqq 25$ th	NA	3.8	yes	-	c.715G>T	c. $715 \mathrm{G}>\mathrm{T}$	Br
MO 112	M	severe	7.0	94.5	$\leqq 25$ th	20	§ 75 th	NA	5.7	no	-	c.901G>T	c.901G>T	Br
MO 113	M	severe	7.4	100	$\leqq 50$ th	17.6	$\leqq 50$ th	1	NA	no	+	c.1023C>G	c.1156C>T	Br
MO 114	M	severe	11.6	95	$\leqq 25$ th	16	$\leqq 10 \mathrm{th}$	NA	NA	yes	-	c.1023C>G	c. $1023 C>G$	Br
MO 115	F	severe	11.5	90	$\leqq 10$ th	13	$\leqq 10 \mathrm{th}$	NA	3.3	yes	-	c. $280 \mathrm{C}>$ T	c.608C>T	Br
MO 116	M	severe	12.4	109	$\leqq 75$ th	21.3	$\leqq 25$ th	NA	7.1	yes	-	c. $280 \mathrm{C}>\mathrm{T}$	c.608C>T	Br
MO 117	F	severe	8.3	91.4	$\leqq 25$ th	13.6	$\leqq 10$ th	1.3	2	no	+	c. $346 \mathrm{G}>\mathrm{A}$	c.1156C>T	Am-Ca
MO 117b	F	severe	6.8	86.4	$\leqq 10$ th	14.1	$\leqq 25$ th	NA	3.5	no	-	c. $346 \mathrm{G}>\mathrm{A}$	c.1156C>T	Am-Ca (It)
MO 120	F	undefined	4.5	NA		NA		NA	NA	NA	NA	c. $612 \mathrm{C}>\mathrm{G}$	c. $612 \mathrm{C}>\mathrm{G}$	$\mathrm{Am}-\mathrm{Ca}$
MO 121	M	attenuated	16.0	150	$\geqq 90$ th	63.4	\geqq 90th	9	14	yes	+	c.181C>T	c.498delC	Am-Ca
MO 121s	F	attenuated	11.0	142.8	$\geqq 90$ th			8	8	yes	-	c.181C>T	c.498delC	Am-Ca
MO 122	M	attenuated	9.0	130	≥ 90 th	35	$\geqq 90$ th	NA	NA	no	-	c. $975 \mathrm{G}>\mathrm{T}$	c.1156C>T	$\mathrm{Ca}-\mathrm{Ca}$
MO 125	M	attenuated	7.2	124	$\geqq 90$ th	26.4	$\geqq 90$ th	3	6	no	+	c. $29 \mathrm{G}>\mathrm{A}$	c.G1215>A	Au
MO 126	M	severe	9.0	104.1	$\leqq 50$ th	17.7	$\leqq 25$ th	at birth	1.4	yes	-	c. $278 \mathrm{~T}>\mathrm{A}$	undefined	Am-Ca
MO 127	M	severe	14.7	102	$\leqq 50$ th	20	$\leqq 25$ th	0.5	9	yes	+	c. $3 \mathrm{G}>\mathrm{A}$	c.257T>C	Fi
MO 129	F	undefined	0.8	NA		NA		NA	NA	NA	-	c. $634-1 \mathrm{G}>\mathrm{T}$	c. $860 \mathrm{C}>\mathrm{T}$	Gr
MO 133	M	severe	24.0	97	$\leqq 25$ th	28	$\leqq 50$ th	0.65	3	yes	+	c.139G>A	c.139G>A	Po
MO 134	M	severe	2.7	85	$\leqq 25$ th	10	§10th	0.6	1.7	yes	-	c. $697 \mathrm{G}>\mathrm{A}$	undefined	Po
MO 138	F	severe	12.7	NA		NA		NA	NA	NA	-	c. $477 \mathrm{G}>\mathrm{A}$	c. $477 \mathrm{G}>\mathrm{A}$	Am-Ca
MO 139	F	severe	11.0	94	$\leqq 25$ th	17	$\leqq 25$ th	1.5	1.5	yes	+	c. $230 \mathrm{C}>\mathrm{G}$	c. $230 \mathrm{C}>\mathrm{G}$	SA
MO 141	M	undefined	33.0	NA		NA		NA	NA	NA	NA	c. $1171 \mathrm{~A}>\mathrm{G}$	undefined	$\mathrm{Ca}-\mathrm{Ca}$
MO 143	M	severe	4.0	93.6	$\leqq 50$ th	16	$\leqq 50$ th	2	4.5	no	-	c. $860 \mathrm{C}>\mathrm{T}$	c. $860 \mathrm{C}>\mathrm{T}$	Mac
MO 144	F	severe	23.3	101.6	$\leqq 50$ th	22.7	$\leqq 25$ th	4	4	yes	+	c.953T>G	c. $1567 \mathrm{~T}>\mathrm{G}$	Ch
MO 145	M	severe	12.0	113	$\leqq 75$ th	20	$\leqq 25$ th	NA	3	yes	+	c.1156C>T	c. $1219 \mathrm{~A}>\mathrm{C}$	Fr
MO 146	F	severe	11.0	111.8	$\leqq 75$ th	20.86	$\leqq 50$ th	2	6.5	yes	-	c. $1171 \mathrm{~A}>\mathrm{G}$	c. $1171 \mathrm{~A}>\mathrm{G}$	$\mathrm{Am}-\mathrm{Ca}(\mathrm{En} / \mathrm{Ge})$
MO 147	F	severe	4.1	91.4	$\leqq 75$ th	13.2	$\leqq 50$ th	at birth	0.5	no	+	c. $901 \mathrm{G}>\mathrm{T}$	c.901G>T	Am-Ca
MO 148	M	severe	8.0	107	$\leqq 50$ th	22	$\leqq 75$ th	2.2	4.3	yes	-	c. $422+2+3$ insT	c. 1195 del A	Ira
MO 148s	F	severe	5.3	103	$\leqq 50$ th	18	$\geqq 90$ th	1.5	1.7	yes	-	c. $422+2+3$ insT	c.1195delA	Ira
MO 150	F	undefined	6.9	NA		NA		NA	NA	NA	NA	c. $485 \mathrm{C}>\mathrm{T}$	c. $485 \mathrm{C}>\mathrm{T}$	Co
MO 151	M	severe	4.0	91.44	$\leqq 50$ th	13.6	$\leqq 50$ th	1.5	2.5	no	+	c.121-1G>A	c. $337 \mathrm{~A}>\mathrm{T}$	Am-Ca
MO 154	F	severe	1.8	81	$\leqq 50$ th	11.5	$\leqq 25$ th	0.5	1.5	no	+	c. $1156 \mathrm{C}>\mathrm{T}$	c. $1156 \mathrm{C}>$ T	Am-Ca (His/Gr)
MO 155	M	severe	14.4	94.3	$\leqq 25$ th	18.6	$\leqq 25$ th	2.5	2.9	yes	-	c.452C>T	c. $452 \mathrm{C}>\mathrm{T}$	Pa
MO 157	M	severe	5.5	89.2	$\leqq 25$ th	NA		NA	NA	NA	NA	c. $938 \mathrm{C}>\mathrm{T}$	c. $938 \mathrm{C}>\mathrm{T}$	$\mathrm{Ca}-\mathrm{Ca}$
MO 158	F	severe	3.8	88.9	$\leqq 75$ th	12.08	$\leqq 50$ th	2.3	2.6	no	+	c. $740 \mathrm{G}>\mathrm{A}$	c.901G>T	Am-Ca (Ge/Sw)
MO 159	F	severe	3.9	90	$\leqq 75$ th	13.2	$\leqq 50$ th	1	1.5	no	+	c. $346 \mathrm{G}>\mathrm{A}$	c. $860 \mathrm{C}>$ T	Tu
MO 160	F	severe	4.0	91.4	$\leqq 75$ th	12.7	$\leqq 50$ th	0.7	1.3	no	+	c. $346 \mathrm{G}>\mathrm{A}$	c. $1485 \mathrm{C}>\mathrm{G}$	Am-Ca
MO 161	M	severe	18.0	117	$\leqq 75$ th	33	$\leqq 50$ th	2	1.6	yes	+	c. $125 \mathrm{G}>\mathrm{A}$	c.374C>T	It
MO 162	M	severe	8.2	101	$\leqq 50$ th	16	$\leqq 25$ th	1.5	2	yes	-	c. $415 \mathrm{G}>\mathrm{A}$	c. $901 \mathrm{G}>\mathrm{T}$	Sp
MO 163	M	attenuated	9.3	139.7	$\geqq 90$ th	34.1	\geqq 90th	2.5	3.8	no	+	c. $1171 \mathrm{~A}>\mathrm{G}$	c. $1354 \mathrm{~T}>\mathrm{A}$	$\mathrm{Ca}-\mathrm{Ca}$
MO 163s	F	attenuated	5.0	116.8	$\geqq 90$ th	25	$\geqq 90$ th	2.3	0.8	no	-	c. $1171 \mathrm{~A}>\mathrm{G}$	c. $1354 \mathrm{~T}>\mathrm{A}$	$\mathrm{Ca}-\mathrm{Ca}$
MO 165	M	severe	7.0	81.3	$\leqq 10$ th	10.9	$\leqq 10$ th	0.8	1.7	no	-	c.405_422+1del19	c. $1480 \mathrm{~A}>\mathrm{G}$	$\mathrm{Ca}-\mathrm{Ca}$
MO 166	F	attenuated	10.2	126.6	$\geqq 90$ th	NA		NA	NA	no	NA	c. $244 \mathrm{~T}>$ C	c. $244 \mathrm{~T}>\mathrm{C}$	Ca
MO 167	F	attenuated	46.9	139.7	\geqq 75th	47.2	$\geqq 75$ th	7	5	yes	-	c. $740 \mathrm{G}>\mathrm{A}$	c. $761 \mathrm{~A}>\mathrm{G}$	Am-Ca
MO 168	F	attenuated	10.1	114	$\geqq 75$ th	22.2	$\leqq 75$ th	2	6.5	no	-	c. $850 \mathrm{~T}>\mathrm{G}$	c. $850 \mathrm{~T}>\mathrm{G}$	Tu
MO 170	F	severe	27.0	91.4	$\leqq 25$ th	22.7	$\leqq 25$ th	2	3	yes	+	c. $122 \mathrm{~T}>$ A	c. $122 \mathrm{~T}>\mathrm{A}$	Am-Ca
MO 172	M	severe	18.8	91.4	$\leqq 10$ th	19.07	$\leqq 10$ th	2	3.2	yes	+	c. $245 \mathrm{C}>\mathrm{T}$	c.498delC	Am-Ca

*The DNA mutation numbering is based on cDNA sequence. Nucleotides numbered from the ATG initiator codons.
\#Al: Albanian, Am-Ca: American Caucasian, Am-Bl: American-Black, Ar: Argentine, Au: Austrian, Br: Brazilian, Bt: British, Ca-Ca: Canadian Caucasian, Ch: Chinese, Chil: Chilean, Co: Colombian Fi: Finnish, Fr: French, Ge: German, Gr: Greek, Hi: Hispanic, It: Italian, Ira: Iraq, Ir: Irish, Jp: Japanese, Mac: Macedonian, Pk: Pakistani, Po: Polish, Pt: Portuguese, SA: Saudi Arabian, Sw: Swedish, SL: Sri Lanka, Sp: Spanish, Tu: Turkish, un: unknown, Uk: Ukrainian.
Highlighted in gray: novel mutations.

https://daneshyari.com/en/article/8344044

Download Persian Version:

https://daneshyari.com/article/8344044

Daneshyari.com

[^0]: Abbreviations: C6S, Chondroitin-6-sulfate; CDC, Centers for Disease Control and Prevention; Cr, Creatinine; DMB, dimethylmethylene blue; DMSO, dimethylsulfoxide; GAGs, Glycosaminoglycans; GALNS, N-acetylgalactosamine-6-sulfate sufatase; IMO, International Morquio Organization; KS, Keratan sulfate; LSD, Lysosomal storage disorder; MPS, IVA Mucopolysaccharidosis IVA.

 * Corresponding author at: Department of Biomedical Research, Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Rd., Wilmington, DE 19899-0269, USA. Fax: +1 302 6516888.

 E-mail address: stomatsu@nemours.org (S. Tomatsu).
 ${ }^{1}$ The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors.
 ${ }^{2}$ Dr. Tomatsu, P.I. of this project, was the former employee at Saint Louis University, while the experiments were conducted and completed.

