
1

EISEVIER

Contents lists available at SciVerse ScienceDirect

Nitric Oxide

journal homepage: www.elsevier.com/locate/yniox

24

25

26

27

28

29

30

31

32

33

34 35

2 Review

Hydrogen sulfide chemical biology: Pathophysiological roles

and detection ☆,☆☆

8 Q1 Gopi K. Kolluru, Xinggui Shen, Shyamal C. Bir, Christopher G. Kevil*

9 Q2 Department of Pathology, LSU Health-Shreveport, United States

10 11

ARTICLE INFO

4 Article history:

- Available online xxxx
- 16 Keywords:
- 17 Sulfide
- 18 Cysteine
- 19 Nitric oxide
- 20 Cardiovascular
- 21 Oxidative stress 22

ABSTRACT

Hydrogen sulfide (H_2S) is the most recent endogenous gasotransmitter that has been reported to serve many physiological and pathological functions in different tissues. Studies over the past decade have revealed that H_2S can be synthesized through numerous pathways and its bioavailability regulated through its conversion into different biochemical forms. H_2S exerts its biological effects in various manners including redox regulation of protein and small molecular weight thiols, polysulfides, thiosulfate/sulfite, iron-sulfur cluster proteins, and anti-oxidant properties that affect multiple cellular and molecular responses. However, precise measurement of H_2S bioavailability and its associated biochemical and pathophysiological roles remains less well understood. In this review, we discuss recent understanding of H_2S chemical biology, its relationship to tissue pathophysiological responses and possible therapeutic uses.

 $\ensuremath{\text{@}}$ 2013 The Authors. Published by Elsevier Inc. All rights reserved.

36 37

Contents

Introduction	. 00
H_2S biosynthesis: enzymatic and non-enzymatic	. 00
Different biochemical forms of sulfide.	
Detection methods for H_2S	. 00
Factors affecting H ₂ S stability	
Specific measurement methods	
The zinc trap/methylene blue and spectrophotometric assays	
Sulfide-specific ion-selective electrodes (ISEs)	
Polarographic electrodes	
Chromatography methods	
Fluorescent probes for H ₂ S detection	
Final points of consideration	
Biological functions of sulfide	
Vasodilation and anti-hypertensive effects	
Anti-inflammatory effects	
Anti-oxidant effects	
Cytoprotection/anti-apoptosis effects	
Fibrinolytic activity	
Anti-platelet activation and aggregation effects	
Pro-angiogenic effects	
Cardioprotective effects (MI and I/R)	
Metabolic suppression	
Atherogenesis	
H ₂ S interactions with NO and other biochemical molecules	. 00

1089-8603/\$ - see front matter © 2013 The Authors. Published by Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.niox.2013.07.002

^{*} This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivative Works License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

[🜣] Funded by NIH HL11331 to C.G.K and LSU Health Sciences Center Feist Cardiovascular Fellowships to G.K.K. and S.C.B.

^{*} Corresponding author. Address: Department of Pathology, LSU Health Sciences Center-Shreveport, 1501 Kings Hwy, Shreveport, LA 71130, United States. E-mail address: ckevil@lsuhsc.edu (C.G. Kevil).

G.K. Kolluru et al./Nitric Oxide xxx (2013) xxx-xxx

	Modulation of enzymatic activity by gaseous molecules	. 00
	Molecular Target Interactions of NO and H_2S	. 00
	Biochemistry of NO– H_2S interactions	. 00
	H ₂ S effects on other reactive oxygen species	. 00
	Interaction with hemeproteins and non-hemeproteins	. 00
	NO, XO and H_2S interaction	
C	Conclusion	. 00
	References	. 00

Introduction

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

Hydrogen sulfide (H₂S) has emerged as an important gaseous signaling molecule playing numerous roles in health and disease, along with CO and NO [1,2]. It acts as a relaxant of smooth muscle and thus a vasodilator, a regulator of cardiac function and N-methyl D-aspartate (NMDA) receptor in the brain, and cytoprotectant and mediator for cardiovascular therapeutic approaches [3–8]. Understanding precise pathophysiological signaling mechanisms and the metabolism of H₂S is a topic of active research. And unraveling its interactions within different tissues, with other biochemical molecules and various signaling mediators is becoming ever more complex. Thus, in this rapidly growing field it is important to appreciate key findings and their potential implications regarding H₂S chemical biology that are now known, as well as to identify critical areas for further understanding and clarification. In this review, we address numerous salient issues regarding biochemical synthesis and metabolism of H₂S, measurement techniques used to detect levels of H₂S both in vitro and in vivo, biological functions regulated by H2S and the potential of therapeutic approaches employing H₂S based therapies for various clinical applications.

H₂S biosynthesis: enzymatic and non-enzymatic

The production of H_2S can occur via two pathways – enzymatic and non-enzymatic. Enzymatic synthesis of H_2S occurs through three enzymes that are cystathionine gamma-lyase (CGL also abbreviated as CSE), cystathionine beta-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). These enzymes have been reported to be organ-specific depending on the type of enzyme. CBS is predominantly found in the brain, nervous system, and liver [4], while CSE is mostly found in the vasculature and liver, and 3-MST can be found in the brain and vasculature [9]. However, all three enzymes are distributed across many tissues and are often jointly present such as CBS and CSE being most prominently found in the liver and kidney [9]. Importantly, while CSE and CBS are hemeproteins primarily located in the cytosol, 3-MST is a zinc-dependent protein found in both the mitochondria and cytosol.

Cystathionine is a critical intermediate metabolite involved in many sulfur-containing amino acids, formed by CBS through condensation of homocysteine along with serine. CSE is also involved in a reaction that converts L-cystathionine and cysteine to form L-cysteine and α -ketoglutarate (α -KG). CSE and CBS ultimately produce H_2S through a reaction involving the generation of L-cysteine, pyruvate, and ammonia. Likewise, 3-MST produces H_2S through a reaction involving the generation of pyruvate from 3-mercaptopyruvate (3-MP). It has recently been shown that 3-MST might also cleave mercaptopyruvate to form pyruvate and H_2S , or catalyze the transsulfuration of a thiol to a persulfide, which can subsequently join a second thiol to form a disulfide and release H_2S [10]. 3-MP substrate is provided through the metabolism of cysteine and α -KG by cysteine aminotransferase (CAT). Fig. 1 illustrates how these enzymes coordinately regulate transsulfuration

activity controlling physiological H₂S levels in a complex and overlapping manner.

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Apart from enzymatic synthesis pathways, endogenous production of H₂S can also occur through other non-enzymatic processes that are less well understood. Non-enzymatic production of H₂S occurs through glucose, glutathione, inorganic and organic polysulfides (present in garlic) and elemental sulfur. H₂S can be generated from glucose either via glycolysis or from phosphogluconate via NADPH oxidase. Glucose reacts with methionine, homocysteine or cysteine to produce gaseous sulfur compounds - methanethiol and hydrogen sulfide. H₂S is also produced through direct reduction of glutathione and elemental sulfur. Reduction of elemental sulfur to H₂S is mediated through reducing equivalents of the glucose oxidation pathway such as NADH, or NADPH [11]. H₂S formation from thiosulfate results from a reductive reaction involving pyruvate, which acts as a hydrogen donor. Thiosulfate is an intermediate of sulfur metabolism from cysteine and a metabolite of H₂S that can also lead to the production of H₂S [12–14]. Though the involvement of mitochondria in oxidizing sulfide has been well known [15], the specific affinity of the enzyme 3-MST to thiosulfate and in its production has been recently reported [16,17]. Further, rhodanese is involved in metabolizing thiosulfate into H₂S and sulfite [13]. Fig. 1 summarizes various enzymatic and non-enzymatic H₂S synthesis pathways that have been described.

Different biochemical forms of sulfide

Apart from its free state, H₂S can react with different biochemical molecules establishing different bioavailable pools including stable, acid-labile and bound sulfide forms (Fig. 2). In the stable pool, sulfur atoms are not readily reactive or liberated upon chemical treatment with acid or dithiothreitol [14]. These compounds exist in a reduced divalent form such as H₂S or oxidized hexavalent form such as sulfate anion. Sulfide can also be categorized based on the form in which they are stored in a biological system such as free sulfides or in bound forms such as acid-labile forms and bound sulfane sulfur [18]. Free or unbound sulfide exists as S²⁻, HS⁻ or H₂S, where its acidic dissociation constants (pKa) range between >12 and 7.0, respectively (Fig. 2). Acid-labile sulfide is mainly in the form of iron-sulfur (Fe-S) complexes and persulfides, which play a critical role in redox reactions in cytoplasm and mitochondria. The critical pH below which H₂S is released from acid-labile sulfur like Fe-S is 5.4 [19]. Conversely, bound sulfane sulfur exists as a compound containing sulfur-bonded sulfur [20]. This includes compounds like polysulfides, thiosulfate, polythionates, thiosulfonates bisorganyl-polysulfanes or monoarylthiosulfonates and elemental sulfur. Bound-sulfane sulfur compounds such as polysulfides release H₂S under reducing conditions suggesting that cellular redox state is important for regulating its bioavailability [21]. Moreover, free H₂S can be incorporated into proteins as bound sulfane sulfur, where its divalent sulfur form binds only to the elemental sulfur, persulfides and polysulfides [22]. These various biochemical forms represent complex and diverse ways in which H₂S bioavailability can be maintained. However, the movement

Please cite this article in press as: G.K. Kolluru et al., Hydrogen sulfide chemical biology: Pathophysiological roles and detection, Nitric Oxide (2013), http://dx.doi.org/10.1016/j.niox.2013.07.002

Download English Version:

https://daneshyari.com/en/article/8345892

Download Persian Version:

https://daneshyari.com/article/8345892

<u>Daneshyari.com</u>