ELSEVIER

Contents lists available at ScienceDirect

Plant Science

journal homepage: www.elsevier.com/locate/plantsci

Involvement of an *ent*-copalyl diphosphate synthase in tissue-specific accumulation of specialized diterpenes in *Andrographis paniculata*

Rajesh Chandra Misra^{a,1}, Anchal Garg^{a,1}, Sudeep Roy^{a,2}, Chandan Singh Chanotiya^b, Prema G. Vasudev^c, Sumit Ghosh^{a,*}

- ^a Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
- b Chemical Sciences Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
- ^c Metabolic and Structural Biology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015. India

ARTICLE INFO

Article history: Received 7 June 2015 Received in revised form 13 August 2015 Accepted 22 August 2015 Available online 28 August 2015

Keywords:
Andrographis paniculata
Ent-copalyl diphosphate synthase
Ent-labdane-related diterpene
Medicinal compound
Specialized metabolism
Transcriptional variants

ABSTRACT

Ent-labdane-related diterpene (ent-LRD) specialized (i.e. secondary) metabolites of the medicinal plant kalmegh (Andrographis paniculata) have long been known for several pharmacological activities. However, our understanding of the ent-LRD biosynthetic pathway has remained largely incomplete. Since ent-LRDs accumulate in leaves, we carried out a comparative transcriptional analysis using leaf and root tissues, and identified 389 differentially expressed transcripts, including 223 transcripts that were preferentially expressed in leaf tissue. Analysis of the transcripts revealed various specialized metabolic pathways, including transcripts of the ent-LRD biosynthetic pathway. Two class II diterpene synthases (ApCPS1 and ApCPS2) along with one (ApCPS1') and two (ApCPS2' and ApCPS2") transcriptional variants that were the outcomes of alternative splicing of the precursor mRNA and alternative transcriptional termination, respectively, were identified. ApCPS1 and ApCPS2 encode for 832- and 817-amino acids proteins, respectively, and are phylogenetically related to the dicotyledons ent-copalyl diphosphate synthases (ent-CPSs). The spatio-temporal patterns of ent-LRD metabolites accumulation and gene expression suggested a likely role for ApCPS1 in general (i.e. primary) metabolism, perhaps by providing precursor for the biosynthesis of phytohormone gibberellin (GA). However, ApCPS2 is potentially involved in tissue-specific accumulation of ent-LRD specialized metabolites. Bacterially expressed recombinant ApCPS2 catalyzed the conversion of (E,E,E)-geranylgeranyl diphosphate (GGPP), the general precursor of diterpenes to ent-copalyl diphosphate (ent-CPP), the precursor of ent-LRDs. Taken together, these results advance our understanding of the tissue-specific accumulation of specialized ent-LRDs of medicinal importance.

© 2015 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Plants produce a large and diverse array of specialized (i.e. secondary) metabolites that have applications as pharmaceuticals, pesticides, flavours and fragrances [1]. Several specialized metabolites are directly utilized as drugs; however, many are leading models for the development of semisynthetic and synthetic drugs [2]. Specialized metabolites are biosynthesized in plants in tissue-specific, organ-specific, and developmentally-specific ways and also in response to pathogen attack and environmental pertur-

bation; involving highly complex and sophisticated biosynthetic pathways [1]. A comprehensive knowledge of the metabolic pathways and their regulation shall be useful to overcome low product yield of the specialized metabolites in plants, following pathway engineering and molecular breeding approaches [3,4].

Labdane-related diterpenes (LRDs), with almost 7000 known members comprise a large superfamily of plant compounds with a broad range of biological activities [5,6]. LRDs possess a characteristic skeleton with a basic decalin structure and an additional C6 skeleton that is either acyclic or constitutes a ring structure with/without an oxygen atom [6,7]. LRDs are derived from the general diterpene precursor (E,E,E)-geranylgeranyl diphosphate (GGPP) following two sequential biosynthetic cyclization and/or rearrangement reactions catalyzed by diterpene synthases (diTPSs) [8]. The first step is a protonation-initiated cyclization of GGPP by class II diTPS, mostly by copalyl diphosphate synthase (CPS) that leads to the formation of a bicyclic labdadienyl/copalyl diphosphate (CPP) with a specific stereochemistry (ent, syn, syn-ent or (+)/nor-

^{*} Corresponding author. Tel.: +91 5222718518; Fax: +91 5222716141. E-mail addresses: sumitghosh@cimap.res.in, sumitg80@gmail.com (S. Ghosh).

¹ Authors contributed equally.

² Present address: Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 12, 61200 Brno, Czech Republic.

Fig. 1. A proposed model for the biosynthesis of bioactive *ent*-LRDs in kalmegh. The pathway is drawn based on common architecture of LRD biosynthesis and the known structures of *ent*-LRDs isolated from kalmegh, including two abundant *ent*-LRDs, andrographolide (AD) and neoandrographolide (NAD). Nomenclatures of the *ent*-LRDs are mentioned in Fig. S1. Broken arrows represent steps with hypothetical pathway intermediates. Probable biosynthetic steps for the formation of compound 20 are presented in Fig. S2. GGPP- geranylgeranyl diphosphate, *ent*-CPP- *ent*-copalyl diphosphate, DMAPP – dimethylallyl diphosphate, GA – gibberellin, CYP450 – cytochrome P450 monooxygenase, GT – glycosyltransferase, AT – acyltransferase, MT – methyltransferase.

mal). The most common variant is *ent*-CPP. Although, (+)- and *syn*-CPP-producing enzymes were also reported, so far enzyme that produces *syn-ent*-CPP has not been identified. However, diterpene natural products with *syn-ent* stereochemistry were recognized

from plants of the *Calceolaria* genus [6]. Beside CPSs, other class II diTPS activities that produce LRDs with endocyclic double bond or oxygen-containing LRDs are also reported [7,9,10]. CPP is further cyclised and/or rearranged in a diphosphate ionization-

Download English Version:

https://daneshyari.com/en/article/8357520

Download Persian Version:

https://daneshyari.com/article/8357520

Daneshyari.com