Accepted Manuscript

Kinetic properties analysis of beta-mannanase from *Klebsiella oxytoca* KUB-CW2-3 expressed in *Escherichia coli*

Pirudee Tuntrakool, Suttipun Keawsompong

PII: S1046-5928(17)30685-X

DOI: 10.1016/j.pep.2018.01.009

Reference: YPREP 5215

To appear in: Protein Expression and Purification

Received Date: 7 November 2017
Revised Date: 19 January 2018
Accepted Date: 19 January 2018

Please cite this article as: P. Tuntrakool, S. Keawsompong, Kinetic properties analysis of beta-mannanase from *Klebsiella oxytoca* KUB-CW2-3 expressed in *Escherichia coli*, *Protein Expression and Purification* (2018), doi: 10.1016/j.pep.2018.01.009.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Kinetic Properties Analysis of Beta-mannanase from Klebsiella oxytoca

KUB-CW2-3 expressed in Escherichia coli 2

2
1
\sim

- Pirudee Tuntrakool^{1,2} and Suttipun Keawsompong^{1,2,3} 4
- 5 ¹Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
- 6 ²Specialized Research Unit: Prebiotics and Probiotics or Health, Department of Biotechnology, Faculty of
- 7 Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
- 8 ³Center for Advanced Studies for Agriculture and Food, KU Institute for Advanced Studies, Kasetsart
- 9 University, Bangkok 10900, Thailand (CASAF, NRU-KU, Thailand)

10

11 **Abstract**

- 12 Endo-1,4-β-mannanase is an enzyme that can catalyze the random hydrolysis of
- β-1,4-mannosidic linkages in the main chain of mannans, glucomannans and galactomannans 13
- 14 and offers many applications in different biotechnology industries. Purification and kinetic
- 15 properties of the endo-1,4-β-mannanase from recombinant *Escherichia coli* strain KMAN-3
- 16 were examined. Recombinant β-mannanase (KMAN-3) was purified 50.5 fold using Ni-NTA
- Agarose resin and specific activity of 11900 U mg⁻¹ protein was obtained. Purified KMAN-3 17
- showed a single band on SDS-PAGE with a molecular weight of 43 kDa. K_{m} and V_{max} values 18
- of KMAN-3 on ivory nut mannan, locust bean gum, defatted copra meal and konjac 19
- glucomannan were 243, 3.83x10⁵ 37 and 2.13x10⁶ mg ml⁻¹ and 2940, 61100, 3930 and 20
- 1.56x10¹⁰ mg⁻¹, respectively. Carboxymethyl cellulose was not digested by KMAN-3. 21

22

- 23
- **Keywords**: Mannan, β-mannanase, Glucomannan, Galactomannan

24

25

26

Download English Version:

https://daneshyari.com/en/article/8359495

Download Persian Version:

https://daneshyari.com/article/8359495

<u>Daneshyari.com</u>