Contents lists available at SciVerse ScienceDirect

Regulatory Peptides

journal homepage: www.elsevier.com/locate/regpep

Effects of trypsin, thrombin and proteinase-activated receptors on guinea pig common bile duct motility

Shih-Che Huang*

Department of Internal Medicine, E-Da Hospital, and School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 824, Taiwan

ARTICLE INFO

Article history: Received 29 March 2012 Received in revised form 18 July 2012 Accepted 27 August 2012 Available online 4 September 2012

Keywords: Common bile duct Proteinase-activated receptor Trypsin Thrombin Motility

ABSTRACT

Trypsin and thrombin activate proteinase-activated receptors (PARs), which modulate gastrointestinal motility. The common bile duct is exposed to many proteinases that can activate PARs, especially during infection and stone obstruction. We investigated PAR effects on common bile duct motility in vitro. Contraction and relaxation of isolated guinea pig common bile duct strips caused by PAR₁, PAR₂ and PAR₄ agonists were measured using isometric transducers. Reverse transcription polymerase chain reaction (RT-PCR) was performed to determine the expression of PAR1 and PAR2. Thrombin and two PAR1 peptide agonists, TFLLR-NH2 and SFLLRN-NH2, evoked moderate relaxation of the carbachol-contracted common bile duct in a concentration-dependent manner. Trypsin and three PAR₂ peptide agonists, 2-furoyl-LIGRLO-NH₂, SLIGKV-NH₂ and SLIGRL-NH₂, generated moderate to marked relaxation as well. The existence of PAR1 and PAR2 mRNA in the common bile duct was identified by RT-PCR. Moreover, two PAR₄-selective agonists, AYPGKF-NH₂ and GYPGOV-NH₂, produced relaxation of the common bile duct. In contrast, all PAR₁, PAR₂ and PAR₄ inactive control peptides did not elicit relaxation. This indicates that PAR₁, PAR₂ and PAR₄ mediate common bile duct relaxation. The thrombin, TFLLR-NH₂, trypsin, and AYPGKF-NH₂-induced responses were not affected by tetrodotoxin, implying that the PAR effects are not neurally mediated. Our findings provide the first evidence that PAR₁ and PAR₂ mediate whereas agonists of PAR₄ elicit relaxation of the guinea pig common bile duct. Trypsin and thrombin relax the common bile duct. PARs may play an important role in the control of common bile duct motility.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Trypsin and thrombin activate proteinase-activated receptors (PARs) through proteolysis. The proteolysis of N-terminals of PARs by proteinases unmasks new terminal sequences which activate PARs [1–5]. Four subtypes of PARs, i.e. PAR₁, PAR₂, PAR₃ and PAR₄, have been described. The tethered peptide ligands are SFLLR, SLIGKV, and GYPGQV for human, as well as SFFLR, SLIGRL, and GYPGKF for mouse PAR₁, PAR₂, and PAR₄, respectively. On the other hand, the ability of the PAR₃ tethered peptide, TFRGAP, to stimulate PAR₃ is unclear [1]. Thrombin is a main activator of PAR₁, PAR₃ and PAR₄ and trypsin, of PAR₂ [1–4].

PARs are found in various tissues, including the gastrointestinal tract [1-4,6]. PAR₁, PAR₂ and PAR₄ modulate the gastrointestinal motility and secretion [1,6-14]. In the human and guinea pig gallbladder, both PAR₁ and PAR₂ mediate contraction; however, PAR₄ activation does not alter gallbladder motility [10,11]. The PAR effects on the common bile duct (CBD) motility are not known. We hypothesized that PAR activation might cause contraction or relaxation of the CBD, similar to the gallbladder. The CBD is exposed to many proteinases that can activate PARs,

especially during CBD infection and stone obstruction. Pancreatic trypsin, extravasated plasma thrombin and bacterial proteinases may activate PARs [3,6,10]. Because CBD motility could affect bile flow, stasis of which may promote the formation of CBD stone [15,16], it is important to study the effects of PARs on CBD motility. The purpose of the present study was to investigate the effects mediated by PAR₁, PAR₂ and PAR₄ on CBD motility. We found that activation of PAR advocates relaxation but not contraction of the CBD, which is the opposite of the PAR effects in the gallbladder.

2. Materials and methods

Male Hartley guinea pigs (300–350 g) were obtained from the National Laboratory Animal Center, Taiwan. All procedures were performed in compliance with relevant laws and institutional guidelines and approved by the Institutional Animal Care and Use Committee of E-Da Hospital. Thrombin (from bovine plasma), trypsin (from porcine pancreas, type IX-S), amastatin, carbachol, and all buffer reagents were purchased from Sigma Chemical, St Louis, MO, USA; TFLLR-NH₂ (Thr-Phe-Leu-Leu-Arg-NH₂, selective PAR₁ agonist), SFLLRN-NH₂ (Ser-Phe-Leu-Leu-Arg-Asn-NH₂, PAR₁ agonist), RLLFT-NH₂ (Arg-Leu-Leu-Phe-Thr-NH₂, inactive PAR₁ control peptide), SLIGRL-NH₂ (Ser-Leu-Ile-Gly-Arg-Leu-NH₂, selective PAR₂ agonist), 2-furoyl-LIGRLO-NH₂ (2-furoyl-Leu-Ile-Gly-Arg-Leu-Orn-NH₂, selective PAR₂ agonist),

^{*} E-Da Hospital, 1, Yi-Da Road, Yan-Chau, Kaohsiung 824, Taiwan. Tel.: +886 7 6150011x2981; fax: +886 7 6150940.

E-mail addresses: shihchehuang@hotmail.com, huangshihche@gmail.com.

^{0167-0115/\$ -} see front matter © 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.regpep.2012.08.011

GYPGQV-NH₂ (Gly-Tyr-Pro-Gly-Gln-Val-NH₂, selective PAR₄ agonist), and AYPGKF-NH₂ (Ala-Tyr-Pro-Gly-Lys-Phe-NH₂, selective PAR₄ agonist) were obtained from American Peptide Company, Sunnyvale, CA, USA. SLIGKV-NH₂ (Ser-Leu-Ile-Gly-Lys-Val-NH₂, selective PAR₂ agonist) and VKGILS-NH₂ (Val-Lys-Gly-Ile-Leu-Ser-NH₂, inactive PAR₂ control peptide) were purchased from Bachem, Bubendorf, Switzerland. YAPGKF-NH₂ (Tyr-Ala-Pro-Gly-Lys-Phe-NH₂, inactive PAR₄ control peptide) was purchased from Peptides International, Louisville, Kentucky, USA. Tetrodotoxin was obtained from Tocris, Cookson, Avonmouth Bristol, UK. Reverse transcription polymerase chain reaction (RT-PCR) reagents and primers for guinea pig PAR₁ and PAR₂ were purchased from Invitrogen, Carlsbad, CA, and Integrated DNA Technologies, Inc., Coralville, IA, USA, respectively.

2.1. Measurement of contraction and relaxation of guinea pig CBD muscle strips

Measurements of contraction and relaxation of isolated muscle strips from the guinea pig CBD were performed according to the procedure published previously [17-19] with minor modifications [20]. In brief, the guinea pig was euthanized by CO₂ and the CBD, from the outer surface of the duodenum to the junction with the hepatic duct, was removed and placed in standard incubation solution, containing 118 mM NaCl, 25 mM NaHCO₃, 4.7 mM KCl, 14 mM glucose, 1.2 mM NaH₂PO₄, 1.8 mM CaCl₂, gassed with 95% O₂-5% CO₂. The final pH at 37 °C was 7.40 ± 0.05 . The CBD was cut longitudinally to make a 0.3×1.0 cm strip, which was attached along the longitudinal axis to an organ bath using surgical silk sutures and incubated at 37 °C in the standard incubation solution continuously gassed with 95% O2-5% CO₂. The strip was connected to an isometric transducer (FT.O3; Grass Technologies, West Warwick, RI, USA), which was connected to an integrated amplifier and computer recording system (BIOPAC systems, Goleta, CA, USA). The basal tension of the muscle strip was adjusted to 0.5 g. Experiments were started after a 45-min equilibration period. The PAR related agents were added to resting or carbachol-contracted muscle strips. All PAR agonists did not stimulate contraction. The relaxation responses were represented as a percentage (% papaverine) of the relaxation to 100 µM papaverine. Carbachol (1 µM) generated a fast and long-duration contraction, which reached a plateau within 6 min. The PAR agonists or control peptides were added 7 min after the addition of carbachol in a non-cumulative manner, i.e., single dose administration, during the relaxation experiments. Tissues were incubated with 10 µM amastatin, an inhibitor of aminopeptidase, 15 min before beginning the experiments to reduce peptide degradation [9,20]. Amastatin did not change the tension of the muscle strip.

For studies using tetrodotoxin, the muscle strips were exposed to 1 µM tetrodotoxin for 15 min, and then to the PAR agonists. Only one concentration response, with or without tetrodotoxin, was constructed with each preparation in the experiments.

2.2. RT-PCR for detection of mRNA for PAR₁ and PAR₂ in guinea pig CBD

RT-PCR for detection of mRNA for PAR1 and PAR2 in the guinea pig CBD was performed as described previously [9,21,22] with minor modification [7]. Total RNA was isolated from the guinea pig CBD using TRIzol reagent and treated with RNAse-free DNAse I. The superscript II RNase H-reverse transcriptase system was employed for reverse transcription. Polymerase chain reaction amplification for PAR₁ was performed with Taq polymerase at 94 °C for 5 min, followed by 45 cycles at 94 °C for 30 s, 56 °C for 15 s, 72 °C for 30 s, and, finally 72 °C for 5 min. Polymerase chain reaction amplification for PAR₂ was performed with Taq polymerase at 94 °C for 15 min, followed by 35 cycles at 94 °C for 30 s, 62 °C for 1 min, 72 °C for 1 min, and, finally 72 °C for 10 min. After amplification, the PCR products were subjected to electrophoresis on a 1.5% agarose gel containing ethidium bromide and analyzed under UV light against DNA molecular markers. The following primers were used [9,21,22]:

2.3. Analysis of data

Results are expressed as means \pm standard error of the mean (SEM). Statistical evaluation was performed using Student's t-test or one-way analysis of variance (ANOVA), corrected by the Dunnett procedure. P<0.05 was considered statistically significant.

3. Results

3.1. Effects of thrombin and PAR₁ peptide agonists in CBD

In the resting guinea pig CBD strips, thrombin, 30 µM, did not cause contraction or relaxation. We then evaluated the ability of thrombin to evoke relaxation of carbachol pre-contracted CBD strips. Carbachol (1 μ M) increased the force of the CBD strips by 0.36 \pm 0.03 g (n = 15) and this contraction reached a plateau within 6 min (Fig. 1). Adding thrombin to the carbachol-contracted muscle strips at the plateau evoked a moderate, sustained and concentration-dependent relaxation (Figs. 1, 2). Thrombin caused detectable relaxation of the carbacholcontracted CBD strips at 3 µM and maximal relaxation at 30 µM, which produced a $41 \pm 1\%$ papaverine (100 µM)-induced relaxation (Fig. 2). Similarly, adding TFLLR-NH₂ and SFLLRN-NH₂ to the carbachol-contracted muscle strips at the plateau resulted in a moderate and concentration-dependent relaxation (Figs. 1, 2). TFLLR-NH₂ produced detectable relaxation of the carbachol-contracted strips at 10 μ M and maximal relaxation at 30 μ M, which produced a 38 \pm 2% papaverine-induced relaxation. The highest concentration (100 µM) of TFLLR-NH₂ tested produced a $37 \pm 1\%$ papaverine-induced relaxation of carbachol-contracted CBD (Fig. 2). SFLLRN-NH₂ caused detectable relaxation of the carbachol-contracted strips at 30 µM. The highest concentration (300 μ M) of SFLLRN-NH₂ tested produced a 45 \pm 5% papaverine-induced relaxation of carbachol-contracted CBD (Fig. 2). In contrast, 100 µM RLLFT-NH₂, the PAR₁ inactive control peptide [23], did not cause relaxation in carbachol-contracted CBD strips (Fig. 2). The thrombin and TFLLR-NH₂-induced relaxations were not altered by

Fig. 1. Typical tracings showing the relaxation of carbachol-contracted guinea pig common bile duct with the addition of thrombin (upper panel) and the PAR₁ selective agonist TFLLR-NH₂ (Thr-Phe-Leu-Leu-Arg-NH₂, lower panel).

Download English Version:

https://daneshyari.com/en/article/8361243

Download Persian Version:

https://daneshyari.com/article/8361243

Daneshyari.com