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a  b  s  t  r  a  c  t

The  multiscale  complexity  of  cancer  as  a disease  necessitates  a  corresponding  multiscale  modelling
approach  to produce  truly  predictive  mathematical  models  capable  of  improving  existing  treatment
protocols.  To  capture  all the dynamics  of  solid  tumour  growth  and  its  progression,  mathematical  mod-
ellers  need  to  couple  biological  processes  occurring  at various  spatial  and temporal  scales  (from  genes
to  tissues).  Because  effectiveness  of  cancer  therapy  is  considerably  affected  by  intracellular  and  extra-
cellular  heterogeneities  as  well  as  by  the  dynamical  changes  in  the  tissue  microenvironment,  any  model
attempt  to  optimise  existing  protocols  must  consider  these  factors  ultimately  leading  to improved  mul-
timodal  treatment  regimes.  By  improving  existing  and  building  new  mathematical  models  of  cancer,
modellers  can  play  important  role  in  preventing  the  use of  potentially  sub-optimal  treatment  combina-
tions.  In  this  paper,  we  analyse  a  multiscale  computational  mathematical  model for  cancer  growth  and
spread,  incorporating  the  multiple  effects  of  radiation  therapy  and chemotherapy  in  the  patient  survival
probability  and implement  the  model  using  two  different  cell  based  modelling  techniques.  We  show  that
the  insights  provided  by such  multiscale  modelling  approaches  can  ultimately  help  in designing  optimal
patient-specific  multi-modality  treatment  protocols  that  may  increase  patients  quality  of  life.
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1. Introduction

Along with the rapid growth in acquisition of genetic, proteomic
and other biochemical and biological data, there has been a paral-
lel development from the theoretical side in terms of modelling. In
particular, systems biology has emerged as a field of research over
the past decade applied to a wide range of problems in the biomed-
ical sciences. Systems biology seeks to bring to bear a range of
inter-disciplinary skills and tools on complex biomedical problems.
By adopting a holistic or integrative approach (as opposed to the
more traditional reductionist logic), systems biology aims to pre-
dict emergent behaviour that will arise from complex biomedical
systems i.e. behaviour that appears over time due to the interac-
tions between genes, proteins, cells and tissues across a range of
spatial and temporal scales. Given the complexity of most biomed-
ical systems and their inherent nonlinearities, it is not possible to
make accurate predictions without adopting some kind of “sys-
tems approach”. Indeed, in the last few years, systems biology itself
has evolved and further developed seeking not just to understand

∗ Corresponding author.
E-mail address: chaplain@maths.dundee.ac.uk (M.A.J. Chaplain).

events at the separate biological scales in a qualitative manner,
but also to develop mathematical models which are truly multi-
scale, leading to the emergence of “quantitative systems biology”
or “quantitative integrative biology”. This novel systems approach
is now being brought to bear on cancer modelling and a related dis-
cipline of what may  be termed systems oncology now exists in its
own right to develop predictive multiscale models of cancer growth
and spread. In this paper, we  present a brief summary of previous
cancer modelling over the past 15–20 years and then focus on two
recent multiscale models of a solid tumour undergoing radio- and
chemotherapy treatments. We  show how simulation results can
be used to optimize treatment regimes resulting in better clinical
outcomes for individual patients.

2. Mathematical models in systems oncology

Decades of cancer modeling have produced established mod-
els representing all the key phases of solid tumour growth i.e.
avascular growth [1,2], tumour-induced angiogenesis [3,4], the
immune response to cancer [5,6], invasion and metastasis [7–11]
and vascular growth [12,13]. New areas are also now being inves-
tigated concerning the spatio-temporal modelling of intracellular
pathways associated with cancer such as p53-Mdmd2 [14,15]. A
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comprehensive overview of the field may  be found in the review
article of Lowengrub et al. [16]. In the past few years especially,
multiscale models of solid tumour growth have been developed in
order to account for the different spatial and temporal scales (from
genes to tissues) that occur not only in cancer but in all biological
systems [17–20]. A review of recent models in this area may  be
found in the paper of Deisboeck et al. [21]. There has also been a
concerted effort to integrate mathematical models of cancer with
real data in an attempt to develop quantitative, predictive models of
cancer progression [22,23] and its treatment using chemotherapy
[24–30], radiotherapy [31–33].

Most of the recent multiscale models of cancer growth and treat-
ment adopt some kind of individual-based modelling approach
where the individual cell is the initial focus of the model. Intracel-
lular processes may  be incorporated through systems of ordinary
differential equations modelling processes in the cytoplasm and
nucleus being associated with each individual cell. By simulat-
ing many interacting cells, insight into emergent tissue level
phenomena can be achieved. In the next section we  briefly review
some of the cell-based modelling techniques currently being
adopted before giving two specific examples of multiscale models
of a solid tumour undergoing radio- and chemotherapy treatments.

3. Cell-based modelling techniques

Cancer is a complex disease involving many interrelated pro-
cesses that occur across a wide range of spatial and temporal scales,
from the intra-cellular level to the tissue level. Consequently, mul-
tiscale models are needed to capture these coupled processes. In
the past 5 years or so, researchers have developed several math-
ematical and computational techniques that allow the study of
how single-cell-based behaviours and local cell–cell and cell–ECM
(extracellular matrix) interactions lead to emergent phenomena at
the tissue level. These methods “trade off” the level of detail per
cell against the number of cells per simulation. A key realisation
that lies at the foundation of all these methods is that tissue devel-
opment, homeostasis or disease are all driven by a fairly limited
set of cellular behaviours. By growing, dividing, dying, adhering,
secreting and absorbing chemicals or transducing signals and inter-
acting with extracellular matrix, cells give rise to a whole range of
tissue-level phenomena from healthy tissue development to cancer
metastasis. Since cells live in a highly viscous environment all cell-
based modelling methods assume some kind of relation between
force (F) and cell velocity (v).

The simplest technique to implement (but not always the sim-
plest to analyse) is the cellular automaton (CA) model which
represents cells as single lattice points and encodes cellular
behaviours in terms of transition probabilities of cells moving from
one lattice location to another. Although defining rules and proba-
bilities governing transitions in CA model is easy, linking these rules
to forces or other physically measurable cellular characteristics is
quite challenging. However simplifying single cell representations
allows modellers to simulate large tissue fragments within rea-
sonable computation times [34–36]. Another related approach is
based on lattice-gas cellular automaton approach [37]. Center Mod-
els (CM) [38,39] relax the requirement of cells to be constrained
to the grid points on a fixed lattice by representing cells as inter-
acting points in space. Inspired by molecular dynamics, CMs  solve
force–velocity, F–v,  equations for each of the model cells. CMs
force- or energy-based formalism permits a much easier trans-
lation of measurable quantities into model parameters. Although
CMs  are computationally more challenging than cellular automa-
ton models they provide more biophysical detail and also enable
simulation up to the level of large tissue fragments. Sub-cellular
Element Models (SEM) appear to be a natural extension of CMs

and they represent an individual cell as a collection of interacting
points in space. To faithfully represent a single cell morphology
and to keep model cells unfragmented, SEM models apply “strong”
interactions between points belonging to same cell and somewhat
weaker interactions to points that are members of different cells.
This separation of interaction strengths makes numerical integra-
tion of equations of motions more challenging [40] as compared
to the simpler Center Model implementation. Regardless of this,
numerical treatment of all center models (including SEM) is much
simpler than molecular dynamics where one cannot assume a F–v
relation. SEMs permit the detailed simulation of single cell mor-
phology, shape changes, etc. but as anticipated, the average size of
the simulation in terms of number of cells is several orders of mag-
nitudes smaller than in the case of CA and CMs. The Cellular Potts
Model (CPM) (or Glazier–Graner–Hogeweg (GGH) model) [41] is a
stochastic method that approximates complex cell shapes as col-
lections of pixels on a regular lattice and defines their behaviours
and interactions through the local minimization of effective ener-
gies depending on cell and pixel configurations. By minimizing
energy via the Modified Metropolis Algorithm, CPM recovers a lin-
ear relation between force and a cells velocity and by using an
energy-based formalism it allows the translation of lab-measurable
cellular characteristics into model parameters. The CPM embeds
the F–v relation into a stochastic computational algorithm making
it less explicit than in center models. Using a lattice makes CPM
simulations faster than corresponding SEM simulations but not as
fast as CA or simple center models. When details of single-cell rep-
resentations are important, the finite element (FE) technique and
immersed boundary (IB) method [42] provide viable alternatives
to earlier methods but at much greater computation cost per cell.
Ultimately, each simulation method should give the same results
for the same biologically determined classes of objects, behaviours
and interactions. Any observed discrepancies between methods can
used to veto and/or improve modelling methods.

In the remainder of this paper, we focus on two recent multiscale
models of a solid tumour undergoing radio- and chemotherapy
treatments. We  show how the computational simulation results
can be used to optimize treatment regimes resulting in better clin-
ical outcomes for individual patients.

4. A multiscale mathematical model of multimodality
treatment

The growth and progression of a solid tumour mass depends
critically on the responses of the individual cells that constitute
the entire tumour mass. The evolution of each individual cancer
cell and its decisions to grow, divide, remain inactive or die are
usually influenced by cells spatial location within the tumour and
intracellular interactions (e.g. the intracellular cell-cycle). These
cellular responses are actively influenced by various extracellular
signals from neighbouring cells as well as its dynamically chang-
ing microenvironment. Here, we  discuss a multiscale mathematical
model (and its two different mathematical implementations) for
solid tumour progression incorporating such intracellular, cellular
and microenvironmental factors. This model can be used to study
the effects of cancer treatments and to optimize treatment regimes.
The cell-cycle plays a critical role in most of the complex cellular
processes that are involved in cancer progression (proliferation, cell
division and DNA replication). Within a mammalian cell, the cell-
cycle is controlled by a family of cyclin dependent kinases (CDK),
whose activity is primarily dependent on association with a regula-
tory protein called cyclin [43,44]. Factors such as CDK inhibitors can
act as negative regulators of the cell-cycle and tumour microenvi-
ronment [45]. In our cell-based model the growth and proliferation
of each cancer cell is determined by its own internal cell-cycle
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