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Wheat rhizosphere harbors a less complex and more stable microbial co-
occurrence pattern than bulk soil
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A B S T R A C T

The rhizosphere harbors complex microbial communities, whose dynamic associations are considered critical for
plant growth and health but remain poorly understood. We constructed co-occurrence networks for archaeal,
bacterial and fungal communities associated with the rhizosphere and bulk soil of wheat fields on the North
China Plain. Rhizosphere co-occurrence networks had fewer nodes, edges, modules and lower density, but
maintained more robust structure compared with bulk soil, suggesting that a less complex topology and more
stable co-occurrence pattern is a feature for wheat rhizosphere. Bacterial and fungal communities followed a
power-law distribution, while the archaeal community did not. Soil pH and microbial diversity were sig-
nificantly correlated with network size and connectivity in both rhizosphere and bulk soils. Keystone species that
played essential roles in network structure were predicted to maintain a flexible generalist metabolism, and had
fewer significant correlations with environmental variables, especially in the rhizosphere. These results indicate
that distinct microbial co-occurrence patterns exist in wheat rhizosphere, which could be associated with
variable agricultural ecosystem properties.

1. Introduction

Agricultural ecosystems have lower plant diversity and greater
spatial homogeneity when compared to natural environments, as a re-
sult of directed and persistent human intervention (Kennedy and Smith,
1995). The rhizosphere is a complex ecological and biological zone
where root exudation can alter biogeochemistry and sustain microbial
activity (Turner et al., 2013). Edwards et al. (2015) proposed a multi-
step model for root microbiome assembly from soil, with each root-
associated compartment harboring a distinct microbiome during pure
cultivation or in greenhouse. In real agricultural systems, bacterial (Fan
et al., 2017) and fungal (Zhang et al., 2017) community composition
have been found to differ significantly between root-associated soils
and bulk soil, with a decrease in microbial diversity closer to the root
(Donn et al., 2015; Fan et al., 2017). However, most studies have fo-
cused on the bacterial or fungal community in isolation, so that the
interaction between archaeal, bacterial, and fungal populations in the
rhizosphere and bulk soil of agricultural crops remains unclear.

Microbial communities consist of species which compete for space
and resources (Hibbing et al., 2010) or engage in symbiotic interactions
(Faust and Raes, 2012). Keystone species are defined as those which
other species rely on such an extent that if they were removed the
ecology of an ecosystem would be dramatically altered (Ze et al., 2013).
Keystone species have been identified in many environments (Zaura
et al., 2009) by defining the degree of node-specific interaction for taxa
within co-association networks (Fisher and Mehta, 2014). Species oc-
cupying key positions in these networks, namely as hubs or connectors,
have the potential to act as keystone species, as the removal of these
nodes can have outsized impact on overall network structure. Keystone
species often have more defined ecological roles, such as bacteria that
suppress fungal root pathogens in the rhizosphere (Mendes et al.,
2011). Shi et al. (2016) identified keystone species in soils associated
with wild oats and found that some of them had low relative abun-
dance. However, few studies have focused on microbial keystone spe-
cies among multiple kingdoms in agricultural ecosystems, let alone
attempt to determine the environmental parameters that shape their
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distribution and co-associations.
Network analyses have been used to explore the ecological inter-

action patterns among microbial species in many different environ-
ments including human gut (Chow et al., 2014; Sung et al., 2017),
oceans (Fuhrman and Steele, 2008) and soils (Ma et al., 2016; Jiang
et al., 2017). Co-occurrence patterns can help decipher the structure
and assembly of complex microbial communities (Barberán et al.,
2012), and predict potential interactions (Kara et al., 2013). Because
co-occurrence patterns are based solely on simultaneous changes in
pairwise taxa abundance, it is not possible to differentiate between
environmental filtering (species with similar niches changing in re-
sponse to the same environmental gradients) and direct interspecific
interactions. However, species occupying similar niches are likely to
compete under many, though not all circumstances (Tilman, 1982), so
differentiation between direct interactions and environmental filtering
may only be necessary when specific interactions are critical to un-
derstanding community behavior. Mendes et al. (2014) used co-occur-
rence networks to demonstrate that the rhizosphere community was a
subset of the bulk soil community, and the rhizosphere bacterial com-
munity had a less complex network compared to that of bulk soil in a
short-term plantation system (Mendes et al., 2014). Ma et al. (2016)
investigated the microbial community co-occurrence patterns of forest
soil across five climate regions, demonstrating a random distribution of
interactions within the archaeal community and a non-random pattern
for bacterial and fungal communities. Jiang et al. (2017) found the
alkaline phosphomonoesterase (ALP) producing Mesorhizobium by
analyzing the network correlations between bacterivores and ALP-
producing bacteria in maize rhizosphere. However, there is little in-
formation about the topological shifts of archaeal, bacterial and fungal
co-occurrence interactions in rhizosphere compared with bulk soil.

The North China Plain has a long agricultural history with a wheat-
maize rotation system (Zhao et al., 2006; Liu et al., 2010). Wheat
(Triticumaestivum L.) is one of the most important crops globally,
however, the increase of wheat productivity has slowed down to 0.9%
per year (Fischer and Edmeades, 2010). One potential way to increase
wheat productivity is by manipulating microbial community interac-
tions that support plant health, especially those in the rhizosphere. In
this study, we investigated archaeal, bacterial, and fungal communities
in wheat rhizosphere and bulk soil on the North China Plain. We pro-
posed two hypotheses: 1) Microbial co-occurrence patterns in wheat rhi-
zosphere are distinct from those in bulk soil, which is affected by both abiotic
and biotic factors; 2) The keystone microbial species are usually metabolic
generalists that demonstrate fewer correlations with environmental vari-
ables.

2. Materials and methods

2.1. Sample collection and soil physiochemical analysis

Samples were collected from nine sampling sites across the typical
wheat planting fields (32° Ñ38° N; 110° E∼118° E) on the North China
Plain during the wheat filling stage (22nd −27th of the May, 2015).
The soil type in most sampling sites were Fluvic Calcaric Eutric
Cambisols, Haplic Luvisols, Cambic Calcisols, Calcaric Eutric Cambisols
and Endocalcaric Luvisols according to the soil taxonomy of FAO. At
each sampling site (∼100 km2 plot), five replicate locations were
sampled. In each location, ten to twelve wheat plants were extracted.
After shaking off the loosely bound soil, we brushed off the tightly
adhered soil, which serve as rhizosphere soil (RS). Beside each wheat
group, the topsoil (0–15 cm) without plants were collected by soil
auger, which serve as bulk soil (BS). Soil pH was determined by pH
meter (Thermo Orion-868) with a 1:5 fresh soil to water ratio. Soil
texture was determined by using Laser Particle Sizer (LS13320). Soil
moisture was determined gravimetrically by drying 5 g fresh soil to the
constant weight under 105 °C for 12 h. Total carbon (TC), total nitrogen
(TN), total phosphorus (TP), and total potassium (TK) were determined

by K2Cr2O7-H2SO4 oxidation method, semi-micro Kjeldahl method, Mo-
Sb colorimetry method and flame spectrophotometry method, respec-
tively.

2.2. High throughput sequencing

DNA was extracted from 0.5 g fresh soil using the Power Soil DNA
kit (MO BIO Laboratories, Carlsbad, CA, USA) following the manufac-
turer's instructions. The archaeal and bacterial 16S rRNA genes were
amplified by primer pairs 524F-10-ext (5′-TGYCAGCCGCCGCGG-
TAA-3′)/Arch958-modR (5′-YCCGGCGTTGAVTCCAATT-3′) (Baker
et al., 2003) and 515F (5′-GTGCCAGCMGCCGCGGTAA-3′)/907R (
5′-CCGTCAATTCCTTTGAGTTT-3′) (Biddle et al., 2008), respectively;
the fungal ITS2 region was amplified by primer pair ITS3 (5′-GCATC
GATGAAGAACGCAGC-3′)/ITS4 (5′-TCCTCCGCTTATTGATATGC-3′)
(Gade et al., 2013). The sequences have been submitted to the NCBI
Sequence Read Archive (SRA) (https://www.ncbi.nlm.nih.gov/sra/
SRP117302) with accession number SRP 117302.

2.3. Sequence analysis

The Quantitative Insight into Microbial Ecology (QIIME) pipeline
(http://qiime.sourceforge.net/) was used to analyze the sequence data
(Caporaso et al., 2010). 1,545,509 high quality sequences of archaea;
3,595,706 high quality sequences of bacteria; 2,383,721 high quality
sequences of fungi were acquired after removing<200 bp long and
average quality score< 25 reads. OTUs were generated based on a 97%
similarity level through UCLUST (Edgar, 2010). The greengenes data-
base (http://greengenes.lbl.gov/) was used to assign the taxonomic
identity of each phylotype of archaea and bacteria; fungal taxonomic
identity was determined using the UNITE database (Kõljalg et al.,
2005).

2.4. Statistical analysis

NMDS (based on Bray-Curtis distance), Mantel test, Envfit,
ANOSIM, MRPP and ADONIS analyses were conducted using the
‘vegan’ R package (Oksanen et al., 2013) in R× 32 (3.2.2) (https://
CRAN.R-project.org/package=vegan). And the physicochemical para-
meters were fitted on the NMDS map based on non-permutation re-
gression. The rank abundance distribution, which was calculated by the
frequency of sequences (OTU Table), was used to test whether sto-
chastic or deterministic processes best explain the community assembly
of archaeal, bacterial, and fungal communities. TeTame (Jabot et al.,
2008) was used to test whether a rank abundance was consistent with
zero-sum multinomial (ZSM) distribution, predicting the dominance of
stochastic processes (Hubbell et al., 2001). Tests for dominance of de-
terministic processes, i.e. rank abundance distributions fitting the
Broken stick model, Pre-emption model, Log-normal model, or Zipf-
Mandlebrot model were performed using ‘radfit’ in the ‘vegan’ R
package (Oksanen, 2010).

The co-occurrence network was constructed with the ‘WGCNA’ R
package based on the Spearman correlation matrix (Langfelder and
Horvath, 2012). We removed OTUs occurring in less than 30% of all
samples, kept OTUs with relative abundances greater than 0.01% for
archaeal, bacterial, and fungal communities (Ma et al., 2016). The
nodes and the edges in the network represent OTUs and the correlations
between pairs of OTUs, respectively. P-values were adjusted by Benja-
mini and Hochberg false discovery rate (FDR) test (Benjamini et al.,
2006), and the adjusted P-values had a 0.001 cutoff. We calculated the
network properties with the ‘igraph’ R package (http://igraph.org), and
generated network images with Gephi (https://gephi.org/). The natural
connectivity provides sensitive discrimination of network structural
robustness, we estimated network stability by removing nodes in the
static network to assess how quickly robustness degraded and we as-
sessed network robustness by natural connectivity (Peng and Wu,
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