

Contents lists available at ScienceDirect

Soil Biology and Biochemistry

journal homepage: www.elsevier.com/locate/soilbio

Large impacts of small methane fluxes on carbon isotope values of soil respiration

Wenjuan Huang, Steven J. Hall*

Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 251 Bessey Hall, Ames, IA 50011, USA

ARTICLE INFO

ABSTRACT

Keywords: Carbon dioxide stable isotopes Isotope mass balance Methane isotopic fractionation Redox fluctuation Aerobic/anaerobic processes Wetland Carbon dioxide isotope (δ^{13} C of CO₂) analysis is increasingly used to address a broad range of questions involving soil C dynamics and respiration sources. However, attaining δ^{13} C mass balance is critical for robust interpretation. Many ecosystems exhibit methane (CH_4) fluxes that are small in the context of total C budgets, yet may significantly impact δ^{13} C values of CO₂ due to large kinetic fractionations during CH₄ production. Thus, the δ^{13} C values of CO₂ do not directly reflect respiration C sources when co-occurring with CH₄, but few studies of terrestrial soils have considered this phenomenon. To assess how CH_4 altered the interpretation of $\delta^{13}C$ values of CO₂, we incubated a Mollisol and Oxisol amended with C₄-derived plant litter for 90 days under two headspace treatments: a fluctuating anaerobic /aerobic treatment (four days of anaerobic conditions alternating with four days of aerobic conditions), and a static aerobic treatment (control). We measured δ^{13} C values of CO₂ and CH₄ with a tunable diode laser absorption spectrometer, using a novel in-line combustion method for CH₄. Cumulative δ^{13} C of CO₂ differed significantly between treatments in both soils. The δ^{13} C values of CO₂ were affected by relatively small CH₄ fluxes in the fluctuating anaerobic/aerobic treatment. Effects of CH₄ on δ^{13} C values of CO2 were greater in the Oxisol due to its higher percent contribution of CH4 to total C mineralization (18%) than in the Mollisol (3%) during periods of elevated CH₄ production. When CH₄ accounted for just 2% of total C mineralization, the δ^{13} C values of CO₂ differed from total C mineralization by 0.3–1‰, and by 1.4–4.8‰ when CH₄ was 10% of C mineralization. These differences are highly significant when interpreting natural abundance $\delta^{13}C$ data. Small CH₄ fluxes may strongly alter the $\delta^{13}C$ values of CO₂ relative to total mineralized C. A broad range of mineral and peatland soils can experience temporary oxygen deficits. In these dynamic redox environments, the δ^{13} C values of CO₂ should be interpreted with caution and ideally combined with δ^{13} C of CH₄ when partitioning sources and mechanisms of soil respiration.

1. Introduction

Over the recent decades, stable carbon isotope (δ^{13} C) analyses have been extensively used to understand belowground C processes, especially to quantify the sources and dynamics of soil carbon dioxide (CO₂) emissions (Amundson et al., 1998; Ehleringer et al., 2000). For instance, measurements of δ^{13} C of CO₂ at natural abundance and in ¹³C labeling experiments can enable partitioning of heterotrophic and autotrophic respiration (Hanson et al., 2000; Tu and Dawson, 2005), quantification of turnover rates for different soil organic C pools (Collins et al., 2000; Vestergård et al., 2016), and identification of biogeophysical processes influencing gas dynamics in the soil system (Moyes et al., 2010; Bowling et al., 2015). Robust interpretation of δ^{13} C values of soil respiration is thus important for our understanding of soil and ecosystem C dynamics.

The $\delta^{13}C$ values of soil respiration are often thought to reflect $\delta^{13}C$

https://doi.org/10.1016/j.soilbio.2018.06.003

of the substrate from which the CO₂ was derived (Ehleringer et al., 2000; Breecker et al., 2015; Hall et al., 2017). However, production of methane (CH₄) impacts the interpretation of δ^{13} C values of CO₂. When CO_2 co-occurs with methane (CH₄), the $\delta^{13}C$ values of the net CO_2 flux may be affected by C isotope fractionation during both methanogenesis and CH_4 oxidation (Fig. 1). The fractionation factor (ϵ) for CH_4 production is defined here as: $\varepsilon = ((1000 + \delta^{13}C_C)/(1000 + \delta^{13}C_{CH_4}) - 1) \times$ $1000 \approx \delta^{13}C_C - \delta^{13}C_{CH_4}$ (Hayes, 1993), where $\delta^{13}C_C$ and $\delta^{13}C_{CH_4}$ are δ^{13} C values of the C source (either CO₂ or acetate) and CH₄, respectively. During methanogenesis, both the hydrogenotrophic (CO₂ reduction; $CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$) and acetoclastic (acetate fermentation; $CH_3COOH \rightarrow CH_4 + CO_2$) pathways impose large fractionations, with ϵ values of 30–90‰ and 7–35‰, respectively (Penning et al., 2005; Conrad and Claus, 2009; Blaser and Conrad, 2016). These result in much lower δ^{13} C values in CH₄ relative to the C substrate (either CO2 or acetate). By mass balance, residual CO2 from

^{*} Corresponding author. E-mail address: stevenjh@iastate.edu (S.J. Hall).

Received 13 April 2018; Received in revised form 4 June 2018; Accepted 6 June 2018 0038-0717/ © 2018 Elsevier Ltd. All rights reserved.

Fig. 1. Schematic of processes affecting C isotope ratios (δ^{13} C values) of CH₄ and CO₂ in fluctuating anaerobic/aerobic soils. The numbers on the lines indicate C isotope fractionation factors (ε). The different letters on the lines indicate different processes: Production of CO₂ from soil respiration (a, b); soil organic C fermentation to acetate (c); acetoclastic methanogenesis (d); hydrogenotrophic methanogenesis (e); CH₄ oxidation (f). The solid line indicates aerobic conditions, and the dashed line indicates anaerobic conditions. The lines in black denote minor C fractionation; the lines in orange indicate that fractionation increased δ^{13} C values of CO₂. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

the hydrogenotrophic pathway and CO₂ produced by acetate fermentation must be enriched in ¹³C to balance the more depleted ¹³C of CH₄ (Whiticar, 1999; Hornibrook et al., 2000). Conversely, CH₄ consumption by aerobic (and potentially anaerobic) oxidation preferentially removes isotopically lighter C ($\varepsilon = 3-30\%$; Happell et al., 1994), resulting in higher δ^{13} C values of CH₄ and lower δ^{13} C values of CO₂ (Fig. 1). Hence, it is clearly important to consider CH₄ fractionation effects on δ^{13} C values of CO₂. These processes have been reasonably well documented in studies of traditional wetland ecosystems (i.e., consistently saturated soils). For example, previous studies have observed more positive δ^{13} C values of CO₂ than bulk soil δ^{13} C in peatlands as a consequence of CH₄ production (Corbett et al., 2013; Holmes et al., 2015).

It remains uncertain, however, whether the influence of CH₄ on δ^{13} C values of CO₂ is also important in terrestrial soils that experience only sporadic or spatially limited O₂ deprivation, and correspondingly small net CH₄ emissions. According to isotope mass balance, the δ^{13} C value of total mineralized C (CO_2 + CH_4) can be calculated as: $\delta^{13}C_{\text{TC}} = P_{\text{CH}_4}/100 \times \delta^{13}C_{\text{CH}_4} + (1 - P_{\text{CH}_4}/100) \times \delta^{13}C_{\text{CO}_2}$, where P_{CH_4} is the percentage of CH₄ to total mineralized C (hereafter denoted "CH₄ percentage"). This equation can be expressed as $\delta^{13}C_{\rm TC} - \delta^{13}C_{\rm CO_2} = -P_{\rm CH_4}/100 \times (\delta^{13}C_{\rm CO_2} - \delta^{13}C_{\rm CH_4})$ to reflect the impact of CH₄ on the δ^{13} C value of CO₂ (ε_{TC-CO_2}). According to the above fractionation factors, the difference between δ^{13} C values of CO₂ and CH₄ is expected to vary from 7 to 90‰ in soils under anaerobic conditions, in which hydrogenotrophic and/or acetoclastic methanogenesis occur without any CH4 oxidation. However, few studies explored C isotope separation between CO₂ and CH₄ ($\delta^{13}C_{CO_2} - \delta^{13}C_{CH_4}$) in soils with sporadic temporal or spatial O2 limitation. Preliminary calculations suggest that small CH₄ fluxes could significantly impact the interpretation of δ^{13} C values of CO₂. If we assume a difference in δ^{13} C values of CH₄ and CO₂ of 30‰, a 5% contribution of CH₄ to total mineralized C would result in δ^{13} C values of CO₂ that are 1.5% greater than total mineralized C. This difference would often be highly significant in the context of ecosystem $\delta^{13}C$ budgets, where differences < 1‰ can provide insights about local and global C cycle processes (Bowling et al., 2014).

Methane production is typically thought to occur under highly reducing conditions that are most prevalent in wetlands or aquatic

sediments (Conrad, 1996). However, terrestrial soils can also have low O₂ concentrations in microsites resulting from imbalances in biological O₂ consumption relative to diffusive re-supply (Sexstone et al., 1985). Fluctuations in soil O2 availability following rain, irrigation, snowmelt, and/or soil frost occur across a broad range of ecosystems including humid forests, grasslands, urban lawns, and croplands (Liptzin et al., 2011; Hall et al., 2013, 2016; Moyes and Bowling, 2013; Jarecke et al., 2016; O'Connell et al., 2018). Temporary depletion of O₂ and other terminal electron acceptors can provide favorable conditions for methanogenesis, and both gross and net CH₄ production have been shown to occur even in bulk aerobic soils (von Fischer and Hedin, 2007; Liptzin et al., 2011; Yang and Silver, 2016). This implies that it may frequently be necessary to account for trace CH₄ production and its δ^{13} C values when using δ^{13} C of CO₂ to understand C cycling processes. However, co-occurring measurements of δ^{13} C of CO₂ and CH₄ from uplands (and even some wetland ecosystems, such as arctic peatlands) remain relatively uncommon.

Here, we incubated a temperate Mollisol and a tropical Oxisol under a fluctuating anaerobic/aerobic condition over 90 days to simulate redox fluctuations driven by variations in moisture and C supply that occur in their natural ecosystem contexts, along with a static aerobic condition (control). We assessed the effects of the fluctuating anaerobic/aerobic treatment on δ^{13} C values of CO₂, CH₄ and total mineralized C (CO₂ + CH₄). We hypothesized that the fluctuating anaerobic treatment would alter δ^{13} C values of CO₂ relative to δ^{13} C of soil mineralized C to a significant extent for ecological interpretation (i.e., one – several ‰) when relatively small CH₄ fluxes (P_{CH4} ~5%) occurred.

2. Materials and methods

2.1. Soil sampling

We sampled a Mollisol and Oxisol characterized by redox fluctuations in March 2017. The Mollisol was from a topographic depression in a field under corn-soybean cultivation in north-central Iowa (41°75'N, 93°41'W), USA, and the Oxisol was from an upland valley in a perhumid tropical forest near the El Verde field station of the Luquillo Experimental Forest (18°17'N, 65°47'W), Puerto Rico. The Mollisol was formed from till following the Wisconsin glaciation and developed under tallgrass prairie and wetland vegetation. The depression has very poorly drained soils described as mucky silt loam (fine, montmorillonitic, mesic Cumulic Haplaquoll) that experience periodic flooding (Logsdon, 2015). This site was cultivated with corn (Zea mays) and soybean (Glycine max) rotated on an annual basis. The Mollisol was sampled following a corn cultivation phase. We collected soils from the plow layer A horizon (0-20 cm), which is mixed via tillage or cultivation every year. Six soil cores (10.2 cm diameter) were sampled in a 50×50 -m region, and then composited to generate spatially representative samples. The Oxisol was formed from volcaniclastic sediments (Buss et al., 2017). This soil experiences temporal shifts in bulk O₂ concentrations, varying from 0% to 21% O₂ over scales of hours to weeks (Liptzin et al., 2011). Six replicate soil cores were sampled from the A horizon (0-10 cm) of the valley site, composited, and shipped overnight to Iowa State University. We chose to assay the surface A horizons from both soils, given that their rates of anaerobic biogeochemical activity at the surface were higher than in deeper horizons due to greater C availability (Hall et al., 2014; Huang and Hall, 2017).

2.2. Optical $\delta^{13}C$ analysis method

The δ^{13} C values of CO₂ and CH₄ are traditionally measured by continuous flow-isotope ratio mass spectrometry. However, relatively low sample throughput and high costs potentially limit measurement frequency and the capacity to capture temporal variation at short time scales (e.g., hourly – daily) relevant to δ^{13} C dynamics over prolonged

Download English Version:

https://daneshyari.com/en/article/8362559

Download Persian Version:

https://daneshyari.com/article/8362559

Daneshyari.com