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A B S T R A C T

Rhizosphere microorganisms play important roles in plant health and growth. The diversity and composition of
rhizosphere microbial communities have been well studied, but little is known about their co-occurrence pat-
terns, especially at a continental scale. Herein, we performed a network-based analysis using integrated bacterial
and fungal community datasets to delineate the co-occurrence patterns of bulk soil and rhizosphere microbiome
and the geographic patterns of network topological features in 51 soybean fields across China. Results showed
that the microbial networks differed between bulk soil and rhizosphere in terms of structure and composition.
Compared with the bulk soil networks, the rhizosphere networks had fewer links between bacteria and fungi,
lower modularity, and smaller average path length; the global, southern and northern networks of rhizosphere
showed similar, higher and lower complexity, respectively. The southern-specific networks of both bulk soil and
soybean rhizosphere had more links between bacteria and fungi compared with the northern-specific networks.
Additionally, the geographic patterns of network topological features differed between bulk soil and rhizosphere
habitats, northern and southern regions. Bacterial sub-networks of both bulk soil and rhizosphere were most
influenced by soil pH; fungal sub-networks were related to fewer environmental factors and most influenced by
soil Mg content. Given that microbial networks may reflect interactions or niches shared among microorganisms,
these results provide new insights into the organization of rhizosphere microbial communities.

1. Introduction

The rhizosphere is a zone of soil that directly surrounds plant roots;
it provides a natural microhabitat for diverse microorganisms and thus
has been considered as a hotspot of microbial diversity and activity in
soils (Philippot et al., 2013). Rhizosphere microbial communities have
a prominent impact on plant nutrition, disease suppression, and abiotic
stress resistance (Berendsen et al., 2012; Mendes et al., 2011; Yang
et al., 2009). Numerous studies have investigated the diversity and
composition of rhizosphere microbial communities and their driving
factors, including soil type, plant species, plant genotype, and devel-
opmental stage (Chaparro et al., 2014; Peiffer et al., 2013; Reinhold-
Hurek et al., 2015). These studies have indicated the effects of selection
via environmental factors on rhizosphere community structure and
provided important insights into rhizosphere community assembly. The
selection process comprises not only environmental variables but also
interactions among microbial species (Nemergut et al., 2013). Micro-
bial interactions may be more important than environmental variables
in determining community structure (Chow et al., 2014; Lima-Mendez

et al., 2015; Steele et al., 2011). However, the interactions among
rhizosphere microorganisms at the community level are still far from
fully understood.

In natural environments, microorganisms live together to form
complex networks through positive (e.g., mutualism), negative (e.g.,
competition), and neutral (e.g., commensalism) interactions (Faust and
Raes, 2012). Network analysis has been used to explore the interactions
among microorganisms in various habitats, and non-random co-occur-
rence patterns were revealed as ubiquitous characteristics of micro-
organisms in soils (Barberan et al., 2012; Ling et al., 2016; Zhou et al.,
2011), lakes (Kara et al., 2013), oceans (Chow et al., 2014; Cram et al.,
2015), and human gut (Faust et al., 2012; Greenblum et al., 2012).
Network analysis can provide additional information on microbial
community ecology that cannot be obtained by traditional analytical
approaches. The microbial community can generally be partitioned into
modules that consist of highly interconnected microorganisms. Mod-
ularity has been interpreted as ecological niche overlap, habitat het-
erogeneity, and phylogenetic relatedness (Freilich et al., 2010; Olesen
et al., 2007). Interestingly, microbial network structures are shaped by

https://doi.org/10.1016/j.soilbio.2017.12.011
Received 18 August 2017; Received in revised form 28 November 2017; Accepted 15 December 2017

∗ Corresponding author.
∗∗ Corresponding author.
E-mail addresses: shipeng27@nwafu.edu.cn (P. Shi), weigehong@nwsuaf.edu.cn (G. Wei).

Soil Biology and Biochemistry 118 (2018) 178–186

0038-0717/ © 2017 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00380717
https://www.elsevier.com/locate/soilbio
https://doi.org/10.1016/j.soilbio.2017.12.011
https://doi.org/10.1016/j.soilbio.2017.12.011
mailto:shipeng27@nwafu.edu.cn
mailto:weigehong@nwsuaf.edu.cn
https://doi.org/10.1016/j.soilbio.2017.12.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.soilbio.2017.12.011&domain=pdf


phylogeny and closely related taxa tend to co-occur more than expected
by chance (Barberan et al., 2012; Ju et al., 2014). Additionally, network
topological features (i.e., network complexity and modularity) change
with environmental conditions (Deng et al., 2016; Ling et al., 2016; Wu
et al., 2016) and thus can be used to define microbial communities.
Owing to these advantages, network analysis has been considered as a
powerful approach in microbial ecology (Zhou et al., 2011).

Mendes et al. (2014) compared microbial association networks in
soybean fields based on samples of two different soil types in two years
and found the rhizosphere network was less complex than the bulk soil
network. In contrast, two recent studies using samples of biological
replicates revealed more complex microbial networks in the rhizo-
sphere of wild oat and Jacobaea vulgaris than in the bulk soil (Shi et al.,
2016; Yan et al., 2017). Presently, it is unclear whether there are dif-
ferences between the microbial networks of bulk soil and rhizosphere
constructed using samples across a broad range of environmental gra-
dients. Moreover, only bacterial communities were analyzed in the
above three studies (Mendes et al.; Shi et al., 2016; Yan et al., 2017).
Fungi have not been considered in the network analysis, despite their
high diversity and essential ecological roles in the rhizosphere (Buée
et al., 2009). Recently, Ma et al. (2016) investigated the co-occurrence
networks of soil microbiota and revealed the biogeographic patterns of
network topological features at a continental scale. However, previous
research of rhizosphere microbial communities relied on samples from
a small number of locations and thus was not robust to identify the
geographic patterns of rhizosphere networks.

In the present study, we used CoNet inference (Faust et al., 2012) to
construct integrated co-occurrence networks of bulk soil and rhizo-
sphere microbiota with bacterial and fungal community datasets from
51 soybean (Glycine max) fields across China. We aimed to address the
following questions: (i) Are the co-occurrence patterns of bulk soil and
rhizosphere microorganisms different at a continental scale? (ii) What
ecological factors drive the geographic patterns of network topological
features, and do these ecological drivers and their contribution differ
between habitats (bulk soil and rhizosphere), regions (northern and
southern), and kingdoms (bacteria and fungi)?

2. Materials and methods

2.1. Study area and sampling

Bulk soil and rhizosphere samples were collected from 51 soybean
fields across China at the flowering stage of soybean (Fig. S1). In each
field, topsoil samples (0–20 cm) were taken randomly from five cores
and pooled as one bulk soil sample. Then, 15–20 healthy plants were
selected at random and removed from the soil. Roots were shaken
gently to remove loose soil, cut off from the plants, and grouped into
one sample per field. A subset of bulk soil samples was air-dried and
analyzed for edaphic properties using standard soil testing procedures
(Bao, 2000), including soil texture (clay, silt, and sand), pH, and or-
ganic carbon (OC), total nitrogen (TN), available nitrogen (AN), and
macronutrient contents (available P, K, Mg, and Ca). Mean annual
temperature (MAT), mean annual precipitation (MAP), potential eva-
potranspiration (PET), mean annual relative humidity (RH), aridity
index (AI), and temperature and precipitation seasonality (TS and PS)
were obtained from monthly weather data for 1981–2010. Short-term
climatic factors, such as one-, two-, and three-month mean precipitation
(SMP1-3) and mean temperature (MMT1-3) ranges were also calculated
(Table S1).

2.2. DNA extraction, PCR application, and sequence analysis

The rhizosphere samples were prepared as described in Lundberg
et al. (2012). Briefly, roots were placed in a sterile 50mL tube con-
taining 25mL of sterile phosphate buffered saline solution (pH 7.0) and
vortexed at the maximum speed for 15 s to remove the rhizosphere soil

from the root surfaces. After the roots were removed, the washing
buffer was filtered through a nylon mesh cell strainer into a clean tube.
The turbid filtrate was centrifuged (3200 g, 15min) and the resulting
pellet was defined as the rhizosphere compartment. Total genomic DNA
was extracted from soils. The V4 region of the bacterial 16S rRNA gene
and the fungal internal transcribed spacer 2 region were amplified
using primer pairs 515F/806R and ITS3-2024F/ITS4-2409R, respec-
tively (Evans et al., 2014; Orgiazzi et al., 2012). Paired-end sequencing
(250 bp) was performed on an Illumina HiSeq 2500 platform (Illumina
Inc., San Diego, CA, USA). A detailed description for DNA extraction,
PCR amplification, sequencing, and processing was provided in the
Supporting Information. The bacterial and fungal counts were nor-
malised separately by the trimmed mean of M values (TMM) method in
the R package EdgeR (Robinson et al., 2010). This approach simulta-
neously addresses the differences in library size and biological varia-
bility that cannot be detected by common microbiome normalization
methods, such as rarefaction and proportions (McMurdie and Holmes,
2014). The raw 16S rDNA sequence data were deposited at the NCBI
small read archive dataset under the study number SRP113347 with the
run number SRR5859796–SRR5860093, and the raw internal tran-
scribed spacer 2 sequence data under the study number SRP113348
with the run number SRR5859807–SRR5860103.

2.3. Network construction

Co-occurrence networks were constructed in CoNet v. 1.0.6 beta
(Faust and Raes, 2016) using the Spearman's correlation and Kullback-
Leibler dissimilarity (KLD) measures (Lima-Mendez et al., 2015). Bac-
terial or fungal OTUs that occurred in< 20% (Ju et al., 2014) of the 51
sites and had a sum relative abundance < 0.01% (Ma et al., 2016) in
all bulk soil or rhizosphere samples were removed from the network
analysis. After this filtering step, a total of 2499 OTUs (1705 bacterial
and 794 fungal) in the bulk soil and 1585 OTUs (1072 bacterial and 513
fungal) in the rhizosphere were obtained. To make the bulk soil and
rhizosphere networks comparable, the same numbers of OTUs (1072
bacterial and 513 fungal) in the bulk soil were selected based on their
relative abundances. Additionally, the 51 sites were separated into
northern (26) and southern (25) regions (Fig. S1), and 1062 bacterial
and 397 fungal OTUs in each region and habitat were selected to
construct region-specific networks. To test whether the choice of the
normalization technique impacts the results, networks were also con-
structed using OTU data normalised by the rarefaction method. For this
purpose, the OTU matrices were rarefied to 25,571 and 958 sequences
per sample for bacteria and fungi, respectively.

When constructing networks, we first computed the KLD between
all OTU pairs; then, we set the dissimilarity threshold to the maximum
value of the KLD matrix and the Spearman's correlation threshold to
0.7. For each edge and measure, permutation and bootstrap distribu-
tions were generated with 1000 iterations. Measure-specific P value was
computed as the area of the mean of the permutation distribution under
a Gauss curve generated from the mean and standard deviation of the
bootstrap distribution. The P values were merged using Brown's method
(Brown, 1975) and then adjusted using the Benjamini-Hochberg pro-
cedure (Benjamini and Hochberg, 1995). Finally, only edges supported
by two measures and with adjusted P-values below 0.05 were retained.
The nodes in the constructed networks represent OTUs and edges re-
present strong and significant correlations between OTUs. Meanwhile,
1000 Erdös-Réyni random networks in an equal size were constructed
as real networks for bulk soil and rhizosphere (Erdős and Rényi, 2012).
A set (13) of network topological properties (e.g., degree, modularity,
betweenness centrality, and average path length) were calculated for
both observed and random networks in the R package igraph (Csardi
and Nepusz, 2006). Network visualization were conducted using Gephi
(Bastian et al., 2009) and Cytoscape 3.5.1 (Shannon et al., 2003).
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