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a b s t r a c t

Rising temperatures in the Arctic can affect soil organic matter (SOM) decomposition directly and
indirectly, by increasing plant primary production and thus the allocation of plant-derived organic
compounds into the soil. Such compounds, for example root exudates or decaying fine roots, are easily
available for microorganisms, and can alter the decomposition of older SOM (“priming effect”). We here
report on a SOM priming experiment in the active layer of a permafrost soil from the central Siberian
Arctic, comparing responses of organic topsoil, mineral subsoil, and cryoturbated subsoil material (i.e.,
poorly decomposed topsoil material subducted into the subsoil by freezeethaw processes) to additions
of 13C-labeled glucose, cellulose, a mixture of amino acids, and protein (added at levels corresponding to
approximately 1% of soil organic carbon). SOM decomposition in the topsoil was barely affected by higher
availability of organic compounds, whereas SOM decomposition in both subsoil horizons responded
strongly. In the mineral subsoil, SOM decomposition increased by a factor of two to three after any
substrate addition (glucose, cellulose, amino acids, protein), suggesting that the microbial decomposer
community was limited in energy to break down more complex components of SOM. In the cryoturbated
horizon, SOM decomposition increased by a factor of two after addition of amino acids or protein, but
was not significantly affected by glucose or cellulose, indicating nitrogen rather than energy limitation.
Since the stimulation of SOM decomposition in cryoturbated material was not connected to microbial
growth or to a change in microbial community composition, the additional nitrogen was likely invested
in the production of extracellular enzymes required for SOM decomposition. Our findings provide a first
mechanistic understanding of priming in permafrost soils and suggest that an increase in the availability
of organic carbon or nitrogen, e.g., by increased plant productivity, can change the decomposition of SOM
stored in deeper layers of permafrost soils, with possible repercussions on the global climate.
� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).
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1. Introduction

Soil organic matter (SOM) decomposition rates in permafrost
soils are expected to increase with rising temperatures in the Arctic
(Hartley et al., 2008; Conant et al., 2011). In addition to the direct
temperature effect, warming might also indirectly affect SOM
decomposition, mediated by an increase in plant net primary pro-
duction. Higher plant productivity is accompanied by an increased
input of plant-derived C into the soil (as root litter or root exudates),
and can thus increase soil C stocks, as observed for amineral subsoil
in the Alaskan tundra (Sistla et al., 2013). In contrast, higher pro-
ductivity was found to reduce soil C stocks in a sub-arctic system,
offsetting the increase in above- and belowground plant biomass,
and, consequently, leading to a net loss of C from the ecosystem
(Hartley et al., 2012).

Plants supply the soil microbial community with a range of
organic compounds that can be either immediately taken up by
microorganisms (e.g., sugars, amino acids and organic acids from
root exudation), or that can be easily decomposed (e.g., cellulose
and protein from root litter). These organic compounds can stim-
ulate the soil microbial community to decompose more SOM
(“priming effect”; Bingeman et al., 1953), (i) by promotingmicrobial
groups that target complex compounds of SOM (Fontaine et al.,
2003), (ii) by providing the energy to break down these com-
pounds (Blagodatskaya and Kuzyakov, 2008), or (iii) by providing C
for microbial growth, thus increasing microbial N demand and
facilitating N mining, i.e., the microbial breakdown of SOM to get
access to N (Craine et al., 2007; Dijkstra et al., 2013).

The latter two mechanisms might be of particular importance
in arctic soils. Microbial activity in arctic soils is considered N
limited (Sistla et al., 2012), suggesting that an increased alloca-
tion of plant C to the soil might strongly stimulate N mining.
Additionally, microbial activity in subsoil horizons in general is
considered energy limited (Fontaine et al., 2007), as the subsoil is
poorly rooted, and supply of plant-derived compounds from root
exudation and root litter is scarce. With 80% of arctic SOM located
below 30 cm (Tarnocai et al., 2009), a large amount of SOM might
be protected from decomposition by energy limitation of micro-
bial decomposers, and might thus be particularly susceptible to
an increased input of plant-derived compounds. So far, it is un-
known how SOM decomposition in different horizons of arctic
permafrost soils will respond to an increased input of plant-
derived organic compounds, and what mechanisms might be
involved.

We here report on the susceptibility of different soil horizons
from a tundra ecosystem in the central Siberian Arctic to an
increased availability of organic compounds. In a priming experi-
ment, we compared organic topsoil andmineral subsoil material, as
well as cryoturbated material, i.e., topsoil material that was buried
in the subsoil by freezeethaw processes (Bockheim, 2007; Tarnocai
et al., 2009). Cryoturbated organic matter is common in arctic soils,
accounting for approximately 400 Gt of C (Harden et al., 2012).
Although it is chemically similar to topsoil organic matter (Xu et al.,
2009), it shows retarded decomposition as indicated by low
respiration rates (Kaiser et al., 2007) and relatively old radiocarbon
ages (Kaiser et al., 2007; Xu et al., 2009; Hugelius et al., 2010). We
hypothesized that an increased availability of organic compounds
would stimulate SOM decomposition in the subsoil (i.e., in mineral
subsoil and cryoturbated horizons) by providing energy for mi-
crobial decomposers, but less so in the topsoil, where energy is not
limiting. Additionally, we tested if priming of SOM decomposition
was connected to N mining, by comparing the effect of organic
substrates with and without N. We expected that N-containing
substrates would result in a weaker priming effect than substrates
without N, by reducing the dependence of the microbial

community on SOM as an N source. Finally, we investigated if
priming of SOM decomposition was connected to a shift in micro-
bial community composition.

To that end, we analyzed SOM-derived respiration andmicrobial
community composition in soil samples amended with 13C-labeled
glucose, cellulose, amino acids, or protein, in comparison with
unamended controls. We thus compared substrates containing N to
substrates without N, as well as monomeric substrates to polymeric
substrates. Since monomeric substrates are immediately available
for microorganisms, whereas polymeric substrates need to be
broken down by extracellular enzymes before microbial uptake,
they might differ in their effect on microbial community compo-
sition and function, and thus on SOM decomposition (Fontaine
et al., 2003).

2. Material & methods

2.1. Soil sampling

Soils were sampled on the Taymyr peninsula in the central Si-
berian Arctic (72� 29.570 N, 101� 38.620 E), from a shrubby moss
tundra (bioclimatic subzone D; CAVM Team, 2003) dominated by
Cassiope tetragona, Carex arctisibirica, Tomentypnum nitens and
Aulacomnium turgidum. The soil was described as a Turbic Cryosol
according to the World Reference Base for Soil Resources (IUSS
Working Group WRB, 2007) or Typic Aquiturbel according to the
US Soil Taxonomy (Soil Survey Staff, 1999), with fine to coarse
loamy texture and an active layer depth of around 80 cm at the time
of sampling in August 2011. We took samples from three soil ho-
rizons in the active layer: We sampled the OA horizon (topsoil
material), as well as a buried Ajj (cryoturbated material) and the
adjacent BCg horizon (mineral subsoil material), the latter two from
a depth of 50e70 cm. Soils were sampled in a 2 m-wide soil profile
by pooling samples taken horizontally with a metal soil corer
within each horizon.We took care that the mineral subsoil material
sampled did not include buried organic material and vice versa.
Living roots were carefully removed and samples homogenized by
hand directly after sampling. Carbon and nitrogen contents of the
individual horizons were 9.4% C and 0.5% N for topsoil material,
4.3% C and 0.2% N for cryoturbated material, and 0.6% C, 0.1% N for
mineral subsoil material (determined with a Perkin Elmer 2400
Series II CHNS/O analyzer).

2.2. Incubation experiment

To investigate the effect of increased C availability on SOM
decomposition, we amended the soils with 13C-labeled glucose,
amino acids, cellulose, or protein. 13C-labeled glucose was pur-
chased from SigmaeAldrich (U-13C, 99 at%), 13C-labeled amino
acids from Cambridge Isotope Laboratories (algal amino acid
mixture, U-13C, 97e99 at%), 13C-labeled cellulose from Isolife (low
degree of polymerization Cichorium intybus, U-13C, >97 at%), and
13C-labeled protein from SigmaeAldrich (algal crude protein
extract, U-13C, 98 at%). All substrates were mixed with the respec-
tive unlabeled compounds to 10 at% 13C before application, and all
substrates were applied in dry form.

Aliquots of fresh soil were amended with glucose, amino acids,
cellulose or protein of 10 at% 13C, in five replicates of 25 g per
treatment, or left unamended as controls (three sets of five 25 g
replicates). We adjusted the amount of substrate to the approxi-
mate C content of each horizon by adding 554 mg C g�1 to topsoil
material, 138 mg C g�1 to cryoturbated material and 55 mg C g�1 to
mineral subsoil material. One set of controls was immediately
harvested to determine the initial state before the start of the
incubation; the remaining samples were filled into microcosms
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