Soil Biology & Biochemistry 70 (2014) 66-78

ELSEVIER

Contents lists available at ScienceDirect

Soil Biology & Biochemistry

journal homepage: www.elsevier.com/locate/soilbio

Isotopomer analysis of production, consumption and soil-toatmosphere emission processes of N_2O at the beginning of paddy field irrigation

Midori Yano ^{a, b, *}, Sakae Toyoda ^c, Takeshi Tokida ^d, Kentaro Hayashi ^d, Toshihiro Hasegawa ^d, Akiko Makabe ^e, Keisuke Koba ^e, Naohiro Yoshida ^{a, c, f}

^a Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan

^b Japan Society for the Promotion of Sciences, 8 Ichiban-cho, Chiyoda-ku, Tokyo 102-8472, Japan

^c Department of Environmental Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan

^d National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604, Japan

^e Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan

^fEarth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan

ARTICLE INFO

Article history: Received 22 May 2013 Received in revised form 28 November 2013 Accepted 30 November 2013 Available online 16 December 2013

Keywords: Nitrous oxide Denitrification Paddy field Flood irrigation N₂O isotopomers Oxygen isotopes

ABSTRACT

In irrigated rice paddies, episodic release of nitrous oxide (N₂O) from the soil to the atmosphere has been observed during the first flood irrigation, but the biogeochemical mechanisms underlying these emissions remain unclear. To elucidate both microbial pathways of N₂O production, consumption and emission processes of N₂O from soil surfaces, we analyzed isotopomer ratios (bulk nitrogen and oxygen isotope ratios, δ^{15} N^{bulk} and δ^{18} O, and intramolecular ¹⁵N site preference, SP) of surface-emitted N₂O and N₂O in soil gas from paddy fields in Japan at the beginning of irrigation. Results indicate that surface-emitted N₂O is produced at shallow depths above the rising groundwater table, and that it is emitted by diffusive transport through air-filled soil pores. Immediately after soil surfaces are submerged, N₂O accumulates in the soil because of the low diffusivity and high solubility of N₂O in water. Isotopomer analysis revealed that high N₂O emissions during the flooding process resulted mainly from N₂O production by bacterial denitrification (nitrate reduction). Moreover, as soil submergence progressed, M₂O was reduced to N₂. N₂O emissions were increased by nitrogen fertilizer application before irrigation. The applied nitrogen fertilizer might enhance N₂O production.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Agricultural soil is a major source of nitrous oxide (N₂O), which contributes to global warming and ozone depletion. In fact, N₂O has 298-times-higher global warming potential than carbon dioxide (CO₂) over a time horizon of 100 years (Forster et al., 2007). Microbial processes produce N₂O in soil by nitrification as a byproduct of ammonia (NH₄⁺) oxidation, via hydroxylamine (NH₂OH) to nitrite (NO₂⁻) in aerobic conditions, and by denitrification as an intermediate product of nitrate (NO₃⁻) and NO₂⁻ reduction under anaerobic conditions. Subsequently, N₂O is further

* Corresponding author. Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan.

E-mail address: yano.m.ab@m.titech.ac.jp (M. Yano).

reduced to dinitrogen gas (N₂) by denitrification. In addition, it is known that some nitrifying bacteria produce N₂O by NO₂⁻ reduction similar to denitrifying bacteria, which is called as nitrifierdenitrification (Wrage et al., 2001). Although these microbial processes in soil have previously been considered mainly as attributable to bacterial processes (Zumft, 1997), fungal denitrification (Shoun and Tanimoto, 1991; Shoun et al., 1992) and archaeal nitrification (Treusch et al., 2005; Leininger et al., 2006; Nicol and Schleper, 2006; He et al., 2007) have also been reported.

High uncertainty prevails in the estimation of global N₂O emissions. Stehfest and Bouwman (2006) estimated the global annual N₂O–N emission from fertilized fields as 3.3 Tg y⁻¹ with the 95% confidence interval of -51% to 107%. One reason for this variation is the episodic peak (burst) of N₂O emissions. A significant increase in N₂O emissions is found most typically after fertilizer application (e.g., Dobbie et al., 1999; Akiyama and Tsuruta, 2002, 2003; Jones et al., 2007; Hayakawa et al., 2009). However,

^{0038-0717/\$ -} see front matter \odot 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.soilbio.2013.11.026

episodic peaks of N₂O emissions have also been detected after rainfall (e.g., Lessard et al., 1996; Dobbie et al., 1999; Sehy et al., 2003; Nishimura et al., 2005; Kusa et al., 2006; Ellert and Janzen, 2008). Other short-lived N₂O emissions due to freezing and thawing of agricultural soils (Christensen and Tiedje, 1990; Jacinthe et al., 2002; Sharma et al., 2006) or wetting soil after drying (Rudaz et al., 1991; Cates and Keeney, 1987; Ruser et al., 2006) were also reported. Those studies reported that N₂O emissions during these events are due to an increased availability of substrates by release of available carbon by the disruption of soil aggregates and enhanced turnover of microbial biomass (Edwards and Cresser, 1992; Lundquist et al., 1999; Kalbitz et al., 2000; Sharma et al., 2006). Although those short-lived N₂O peaks account for a large portion of annual N₂O emissions, monitoring in low temporal and spatial resolution has difficulty in capturing such spiky peaks.

Elucidating the environmental variables affecting the shortlived N₂O emissions is useful for enhancing the accuracy of both N₂O monitoring and relevant numerical models. Many soil incubation studies of the effect of soil water content on N₂O emission have been conducted under several different soil water conditions (e.g., Firestone and Tiedje, 1979; Nugroho and Kuwatsuka, 1992; Weier et al., 1993; Bandibas et al., 1994; van Groenigen et al., 2005a). However, soil incubation studies have difficulty reproducing the temporal dynamic change of soil water content of actual fields. Therefore, it is also important to elucidate the influences of the rapid increase of soil water contents on temporal changes of N₂O emission or production and consumption processes of N₂O under actual field conditions.

Recent studies suggested that rice cultivation is an important anthropogenic source of atmospheric N₂O and methane (Cai et al., 1997; Akiyama et al., 2005). As for paddy rice cropping in Japan, fields are entirely submerged before rice seedling transplantation. During the flooding process, episodic release of N₂O from the soil to the atmosphere has been observed, which has been regarded as resulting from denitrification attributable to developing anaerobic conditions with subsequent rapid reduction of NO₃⁻ in the topsoil (Nishimura et al., 2004, 2011; Toyoda et al., 2011). However, production and consumption processes of N₂O in the soil and its emission process from soil surfaces remain unclear.

For estimation of the relative contribution of nitrification and denitrification for N₂O production or the degree of N₂O reduction to N₂, changes in the natural abundances of N and O isotopes have been used to characterize N2O in soil ecosystems (Kim and Craig, 1993; Perez et al., 2000; Van Groenigen et al., 2005b; Wrage et al., 2005; Rock et al., 2007; Kool et al., 2010, 2011b; Minamikawa et al., 2011). In addition, variations of N and O isotopes in inorganic N species can provide important information about nitrogen cycles in ecosystems (Ostrom et al., 2002). In general, biological processes are thought to fractionate in favor of lighter isotopes relative to heavier isotopes. Fractionation during N₂O production by nitrification is generally higher than that of denitrification, which means that the N₂O produced by nitrification is more depleted in ¹⁵N and ¹⁸O relative to substrates than the N₂O produced by denitrification (Baggs, 2008; Park et al., 2011; Toyoda et al., 2011). However, the utility of δ^{15} N values for distinguishing nitrification and denitrification presents several complications (Baggs, 2008). First, the enrichment factors for ¹⁵N for the processes depend on the compounds of substrates and on their $\delta^{15}N$ value (Mariotti et al., 1981; Barford et al., 1999; Wunderlich et al., 2012). Second, the isotopic compositions of the N₂O are influenced by the degree of N₂O reduction to N₂ (Menyailo and Hungate, 2006; Ostrom et al., 2007; Jinuntuya-Nortman et al., 2008). Third, N₂O derived from archaeal NH_4^+ oxidation has $\delta^{15}N$ values that are higher than those observed for NH₄⁺ oxidizing bacteria (Santoro et al., 2011) (NH⁺₄ oxidation is regarded as nitrification in this study). Similar complications arise when using δ^{18} O signatures to distinguish microbial processes of N₂O production and consumption. Moreover, measured ¹⁸O enrichment factors are highly variable (Baggs, 2008; Park et al., 2011; Toyoda et al., 2011) and the δ^{18} O values of N₂O are influenced by oxygen exchange between N₂O precursors and water (Kool et al., 2007, 2009b; Casciotti et al., 2010).

In addition to these "bulk" (average) isotope ratios, analyses of intramolecular distribution of ¹⁵N in N₂O (Brenninkmeijer and Rockmann, 1999; Toyoda and Yoshida, 1999) have been proposed as new tools for discerning the microbial pathways of N₂O production. In contrast to $\delta^{15}N^{bulk}$ and $\delta^{18}O$, the difference between central and terminal ^{15}N enrichment ($\delta^{15}N^{\alpha}$ – $\delta^{15}N^{\beta}$ = ^{15}N site preference (SP)) is considered to be independent of the isotopic signature of the substrate (Toyoda et al., 2002). Previous pure culture studies indicated that SP during N₂O production can distinguish bacterial denitrification and nitrifier-denitrification from other processes including bacterial or archaeal nitrification and fungal denitrification (Decock and Six, 2013). The reported SP values for bacterial denitrification and nitrifier-denitrification are $-2.2~\pm~3.2_{\infty}^{\circ}$ and $-1.0~\pm~4.3_{\infty}^{\circ}$ respectively, while reported SP values for N₂O produced by bacterial NH₂OH oxidation (nitrification) are $33 \pm 1.6\%$, irrespective of microbial species (Decock and Six, 2013). The SP values for produced N₂O are 30.8 \pm 4.4% for archaeal nitrification (Santoro et al., 2011) with archaeal enrichment cultures (Santoro et al., 2010), and 37.0 \pm 2.3% for fungal denitrification with Fusarium oxysporum and Cylindrocarpon tonkinense (Sutka et al., 2008).

Using isotopomer analysis of N_2O and its substrates, along with other physical and chemical properties of soils, this study was conducted to elucidate the temporal changes of production, consumption, and soil-to-atmosphere emission processes of N_2O in situ from paddies without rice plants during flooding process. We tried to figure out the temporal changes during flooding process using spatial variability of soil water content. We also analyzed the effect of nitrogen fertilizer application on N_2O emissions during that period.

2. Materials and methods

2.1. Study site and field management

Measurements of N₂O emissions and N₂O concentrations of soil gases, in addition to gas sampling for isotopomer analysis, were conducted in rice paddy fields in Tsukubamirai City, Ibaraki Prefecture, Japan ($35^{\circ}58'$ N, $139^{\circ}59'$ E). The Fluvisol soil type had the following main soil properties in the plowed layer (to a depth of 13–16 cm): bulk density, 0.87 g cm⁻³; soil pH (1:2.5 water), 5.9; total C and N contents, 21.4 and 1.97 mg g⁻¹, respectively; percentages of sand, silt and clay, 36%, 40% and 23%, respectively (Hasegawa et al., 2013).

Experiments were conducted five (in 2010) or two (in 2011) days after the beginning of irrigation of 25 April, respectively. In addition, we also made a consecutive monitoring of N₂O flux from 25 April to 9 May, 2011 at one of the control plots. We used five rectangular fields (Fig. 1). The longer side of each field was 100 m and the shorter one ranged from 10 to 70 m. The water source for irrigation was common, and the irrigation water was supplied from one of the shorter side of each field. In 2010, the measurement and sampling was conducted in two rectangular fields (Fig. 1). Each field had four plots. One rectangular field was a control field. Another rectangular field was fertilized. In the fertilized field, blended fertilizer was applied on April 25 at the rate of 6.0 g N m⁻², and was incorporated into the soil to a depth of plowed layer (13–16 cm) using a rotary tiller. The blended fertilizer included controlled-

Download English Version:

https://daneshyari.com/en/article/8364926

Download Persian Version:

https://daneshyari.com/article/8364926

Daneshyari.com