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a b s t r a c t

A mathematical system of differential equations for the modelization of mutualistic
networks in Ecology has been proposed in Bastolla et al. (2007). Basically, it is stud-
ied how the complex structure of cooperation interactions between groups of plants
and pollinators or seed dispersals affects to the whole network. In this paper we prove
existence and characterization of the global attractor associated to the model. The
description of the geometrical internal structure of the attractor becomes the proper
complex network describing all the possible future scenarios of the phenomena. The
arguments show a Morse Decomposition of the attractors, leading to the existence of
a global Lyapunov function for the associated gradient semigroup. In particular, we
are able to prove topological structural stability of the system, i.e., the associated
attracting complex networks are robust under (autonomous and non-autonomous)
perturbation of parameters.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Complex networks driven by mutualistic (or cooperative) relations among nodes are very common in
different areas of Science as Ecology, Sociology and Economy. It is probably in Theoretical Ecology where
a more abstract formulation of these systems has been reached. In this line, the authors in [1] analyze the
net of connections between bipartite graphs representing two kind of species (classified into two sets, plants
and animals) and the cooperative links between the differentiated groups (see also [2–5]) (see Fig. 1).

For the analysis of the dynamical properties of the networks, a mathematical model of differential equa-
tions has been proposed, which reads as follows: suppose P is the total number of plants and A the total
number of animals. We suppose that plants (and animals) are in competition and plants and animals have
cooperation links. Then, we can write the following system of P + A differential equations for Spi and Sai
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Fig. 1. Typical bipartite graph representing a complex network of mutualistic type. The two sets in the graph represent respectively
groups of plants and animals. Each group has competition relations between every two nodes in the same group. The links in the
graph represent cooperative relations of nodes between plants and animals of each different group.

the species density populations for the ith species of plant and of animal respectively:

dSpi
dt

= Spi


αpi −

P
j=1
βpijSpj +

A
k=1
γpikSak


dSai
dt

= Sai


αai −

A
j=1
βaijSaj +

P
k=1
γaikSpk


Spi(0) = Spi0
Sai(0) = Sai0

(1)

for each pi for 1 ≤ i ≤ P and ai with 1 ≤ i ≤ A. Here, the real numbers αpi and αai represent the intrinsic
growth rates in the absence of competition and cooperation for plants and animals, respectively, βpij ≥ 0
and βaij ≥ 0 denote the competitive interactions and γpij ≥ 0 and γaij ≥ 0 the mutualistic strengths. For
this model, the authors study in [1] (see also [2–6]) how the architecture of a mutualistic network, i.e., the
topology of connections between species increases biodiversity in the system. Indeed, it is observed that the
more nestedness of the network, the more probability for a richer biodiversity. In particular, and from a
dynamical system approach related to (1), this means that the presence of highly linked cooperative species
in the system produces coexistence of species that would go to extinction without them. But the authors go
even further, and explain how the more nestedness species (a topological property of the system), the more
capacity of the network to increase biodiversity (a dynamical fact of it).

In this paper we make a full mathematical study of system (1). This will need a careful treatment of
parameters in order to avoid blow-up of solutions (see Theorem 2), although, from a dynamical point of
view, will not introduce artificial facts into the model. In particular, after a sufficient condition for existence
and uniqueness of solutions, which allows us to define a dynamical system {T (t)}t≥0 for (1), we prove that
the system possesses a global attractor, A, i.e., a compact invariant set of the phase space determining all the
asymptotic behavior of solutions, uniformly on bounded sets (Definition 3). We study the geometrical char-
acterization of this global attractor, which can be described by the union of the unstable manifolds associated
to the stationary points for (1). This is a consequence of the two main results of this paper: the dynamical
system T (t) is gradient (Theorem 21), which we prove as a consequence of the system to possess a unique
stationary solution which is globally asymptotically stable in the positive cone of solutions (see Theorem 11).

It is important to realize that each equilibrium W ∗ is a vector in RP+A and that its P + A components
correspond to the P + A nodes of the phenomenological complex network. In this sense, it is remarkable
that each of the stationary points is highlighting a subnet of the former complex network. Indeed, the
strictly positive components of each equilibrium point out a subset of nodes and connections of the original
network. In particular, the globally stable equilibrium is indeed the complex network of the phenomena
showing the future biodiversity of the Ecological system. This is the fact that makes crucial the study of
global attractors and its geometrical description for our model. Indeed, for a gradient system, given a finite
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