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a b s t r a c t

In this paper, we are concerned with the compressible Navier–Stokes–Poisson
equations with the given external force of general form in three dimensional space.
Based on the weighted L2 method and the contraction mapping principle, we prove
the existence and uniqueness of stationary solutions. Then, we show the stability of
solutions to the Cauchy problem near the stationary state provided that the initial
perturbation is sufficiently small. Finally, the time decay rates of the solutions are
obtained when the initial perturbation belongs to Ḣ−s with 0 ≤ s < 3

2 .
© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider the three-dimensional compressible Navier–Stokes–Poisson equations

∂tρ+ divm = 0,

∂tm+ div

m⊗m
ρ


+∇P (ρ) = µ∆

m

ρ
+ (µ+ λ)∇div m

ρ
+ ρ∇Φ + ρf,

∆Φ = ρ− ρ̄, lim
|x|→∞

Φ(t, x) = 0,

(ρ,m)(t, x)|t=0 = (ρ0,m0)(x).

(1.1)

Here ρ(t, x) > 0,m(t, x),Φ(t, x) represent the density, the momentum, the electrostatic potential of the
electrons at time t ≥ 0 and position x ∈ R3. The pressure function P = P (ρ) is assumed to be a smooth
function in a neighborhood of ρ̄ satisfying P ′(ρ̄) > 0, where the constant ρ̄ > 0 denotes the background doping
profile. The constants µ, λ are the viscosity coefficients with the usual physical conditions µ > 0, λ+ 2

3µ ≥ 0.
Moreover, f(t, x) is a given external force.
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In comparison with the Navier–Stokes–Poisson equations studied in [1], where the external force is
considered to be the potential force, the steady states of momentum in system (1.1) are no longer constant
0. The stationary problem corresponding to the initial value problem (1.1) is

divmst = 0,

div

mst ⊗mst

ρst


− µ∆mst

ρst
− (µ+ λ)∇ div mst

ρst
+∇P (ρst) = ρst∇Φst + ρstf,

∆Φst = ρst − ρ̄.

(1.2)

The compressible Navier–Stokes–Poisson equations (NSP) can be used to simulate, for instance in
semiconductor devices, the transport of charged particles under the electric field of electrostatic potential
force [2]. Recently, some important progress has made for the (NSP) system. For the pressure law p(ρ) = ργ

with the adiabatic exponent γ > 3/2, the global existence of weak solutions was obtained by [3] when
the spatial dimension is three in the framework of Lions and Feireisl for the compressible Navier–Stokes
equations [4,5]. When there is no external force, we refer to [6–11]. Hao and Li [6], and Zheng [11] established
the global strong solutions of the initial value problem for the multi-dimensional compressible (NSP) system
in Besov space, respectively. The global existence and the optimal decay rates of the classical solution around
a constant state were obtained by Li, Matsumura, and Zhang [7]. Wang and Wu [10] investigated the initial
value problem for the (NSP) equations in Rn (n ≥ 3) and obtained the pointwise estimates of the solution
by a detailed analysis of the Greens function to the corresponding linearized equations. Wang [9] observed
the special construction of the (NSP) equations and posed some stronger conditions on the initial value
and then proved the global existence and asymptotic decay of solutions in three dimensional space under
smallness condition on the initial data. Recently, for the non-flat doping profile, Tan and his collaborators
in [8] study the stability of the steady state of the compressible (NSP) equations, where they prove the global
existence near the steady state for the large doping profile. From those work, a common feature shows that
the momentum of the (NSP) system decays at the slower rate than that of the compressible Navier–Stokes
system in the absence of the electric field, which thus implies that the electric field could affect the large
time behavior of the solution and produce some additional difficulties of analysis.

When the external force is taken into consideration. Zhao and Li [1] studied the global existence and
asymptotic behavior of smooth solution around the stationary solutions, while the external force is the
potential force, i.e. f = −∇ψ, where ψ is a scalar function, then there exists a unique stationary solution
(ρ̃, 0, Φ̃) if ψ satisfies some smallness condition. When the external force is given by the general form
f = div f1 +f2, the stationary solution is nontrivial in general, for the compressible Navier–Stokes equations,
cf. [12,13]. For the compressible Navier–Stokes–Korteweg equations, cf. [14]. But to the rate of convergence,
Shibata and Tanaka in [15] obtained:

∥∇(ρ− ρ∗, u− u∗)∥H2 ≤ C(κ)(1 + t)−
1−κ

2 ,

for any small positive constant κ when the initial perturbation belongs to H3(R3)∩L6/5(R3), but C(κ) may
become∞ when κ tends to zero. Notice that even when κ = 0, the rate is not optimal for the perturbation in
the space L6/5. For this reason, we study the optimal time decay rates of solutions when initial perturbation
is in H−s with 0 ≤ s < 3

2 in the last section. For more stability of nontrivial stationary solution, the
interesting reader may refer to [16–20], for which we do not go into details here.

Notations: Throughout this paper, for simplicity, we will omit the variables t, x of functions if it does
not cause any confusion. C denotes a generic positive constant which may vary in different estimates. We
write ∥(A,B)∥X := ∥A∥X + ∥B∥X and


g dx =


R3 g dx. Next, we introduce some function spaces. Let

Hm(R3),m ∈ Z+ denote the usual L2-Sobolev spaces with normal ∥ · ∥Hm and Lp(R3), 1 ≤ p ≤ ∞ be the
usual Lp spaces with norm ∥ · ∥Lp . ∇l with an integer l ≥ 0 stands for the usual any spatial derivatives of
order l. When l < 0 or l is not a positive integer, ∇l stands for Λl defined by Λlg := F−1(|ξ|lFg), where
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