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a b s t r a c t

A complete adjoint symmetry classification of the nonlinear diffusion equations with
convection and source terms is performed and all adjoint symmetries are expressed
in a unified form X = ϕ(x, t)∂u, where ϕ(x, t) satisfies a linear partial differential
equation. Moreover, we find that all the adjoint symmetries are conservation law
multipliers of the equation under study. We also show that the adjoint symmetries
are just the substitutions of nonlinear self-adjointness and vice versa. Finally,
a general conservation law formula associated with the symmetry and adjoint
symmetry is given and two illustrated examples are considered.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The classical symmetry group theory provides an effective method to analyze partial differential equations
(PDEs). For instance, it can be used to derive new solutions from known ones, classify PDEs to equivalent
classes, linearize nonlinear PDEs to linear ones, construct conservation laws by Noether’s theorem, etc. [1,2].

The classical method for finding symmetry of PDEs is the Lie group method of infinitesimal transformation
and the associated symmetry determining system is linear and overdetermined. Roughly speaking, for the
system of m PDEs of rth-order

Eα(x, u, u(1), . . . , u(r)) = 0, α = 1, 2, . . . ,m, (1)

where x = (x1, . . . , xn) is an independent variable set and u = (u1, . . . , um) is a dependent variable set,
u(i) denotes all ith x derivatives of u, a symmetry Xη = ηi(x, u, u(1), . . . , u(s))∂ui arises from solving the
following system on the solution space of Eq. (1)

(LE)αρ ηρ = ∂E
α

∂uρ
ηρ + ∂E

α

∂uρi1
Di1η

ρ + · · ·+ ∂Eα

∂uρi1···ir
Di1 · · ·Dirηρ = 0. (2)
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Note that, hereinafter, the summation convention for repeated indices is used and Di denotes the total
derivative operator with respect to xi,

Di = ∂

∂xi
+ uσi

∂

∂uσ
+ uσij

∂

∂uσj
+ · · · , i = 1, 2, . . . , n.

Since Lie group method is entirely algorithmic, thus many symbolic manipulation programs have been
developed to facilitate the calculations [3]. Meanwhile, there have been several generalizations of the classical
Lie symmetry which include non-classical symmetry, conditional symmetry and generalized symmetry and
etc. [4–7].

An adjoint symmetry Xω = ωρ(x, u, u(1), . . . , u(s))∂uρ of system (1) is determined by the adjoint equations
of system (2), i.e.,

(L ∗E)ραωρ = ωρ
∂Eρ

∂uα
−Di1


ωρ
∂Eρ

∂uαi1


+ · · ·+ (−1)rDi1 · · ·Dir


ωρ
∂Eρ

∂uαi1···ir


= 0. (3)

However, comparing with the powerful functions of Lie symmetry, one cannot identify a sort of direct action
of adjoint symmetry on the study of PDEs, but they do carry relevant information, in particular with respect
to the conservation laws of PDEs [2].

Conservation laws have many significant effects, particularly with regard to integrability, constants of
motion, and numerical solution methods, thus a number of methods are developed to construct conservation
laws. For the PDEs admitting a variational principle, Noether’s theorem gives a formula for obtaining local
conservation laws by use of variational symmetries [1,2]. For the PDEs without having a variational principle,
one may adopt direct method, partial Lagrangian method, multiplier method, nonlinear self-adjointness
method to achieve the goal [8–12].

In particular, nonlinear self-adjointness provides an effective method to construct conservation laws of
the system of PDEs whether it has a variational principle or not [13–15]. The main idea of the method is
to turn the system of PDEs into Lagrangian equations by artificially adding additional variables, then to
apply the theorem proved in [16] to construct local and nonlocal conservation laws. Meanwhile, the proposed
conservation law formula only involves differential operation instead of integral operation and thus can be
fully implemented on a computer. Approximate nonlinear self-adjointness and approximate conservation law
of perturbed PDEs were considered in [12,17,18]. Quite recently, comparisons of nonlinear self-adjointness
method with multiplier method are studied in [19,20].

This paper is devoted to study adjoint symmetry and conservation law of the nonlinear diffusion equations
with convection and source terms

G = ut −

F (u)ux


x
− P (u)ux −Q(u) = 0, (4)

where u = u(x, t) is an unknown function of two independent variables x = x1 and t = x2, F (u)(F ′(u) ̸=
0), P (u) and Q(u) are respectively three arbitrary differential functions and referred to as the diffusion,
convection and source terms. A huge number of researches based on the symmetry-related methods are
performed for Eq. (4) and its subclasses (see for examples [21–23] and references therein). Observe that
Noether’s theorem is not suitable for Eq. (4) since it is not derived from a variational principle. Thus
conservation laws of certain subclasses of Eq. (4) were considered through direct method in [24,25] and
references therein.

Eq. (4) generalizes numerous known nonlinear second-order evolution equations describing various
processes in biology, ecology, physics, chemistry, and etc. [26–29]. For example, as an extension of linear
heat equation ut = uxx, the well-known nonlinear heat equation

ut =

F (u)ux


x
, (5)
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