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a b s t r a c t

We prove the exponential decay of the energy related to a locally damped fifth-order
equation posed on the whole real line with the initial datum from a bounded set of
L2. A local smoothing effect in H2 is established, which is essential to obtain the
necessary a priory estimates. Moreover, it is shown that arguments used in the article
can be applied to prove the exponential decay rate of solutions for the Korteweg–
de Vries equation with a similar localized damping term provided the initial data
are uniformly bounded in L2. This last fact improves some previous results.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The fifth-order equation

ut + ux + up−1ux + uxxx − γuxxxxx = 0, p ≥ 2, (1.1)

is the nonlinear dispersive PDE that appears in the theory of magneto-acoustic waves in plasma, [1], and in
modeling of gravity–capillary water waves, [2]. The refereed equation is also mentioned in [3,4] as a special
version of the Benney–Lin equation, [5].

It is well-known that dispersive equations provide soliton-like solutions whose profiles do not change
in time. In certain situations, however, it is of interest to control such physical phenomena; the decay of
solutions is an essential tool for this purpose. There are various dissipative mechanisms which can be added
into the model: second and fourth-order “viscous” terms, nonlocal integral terms, “frictional” damping terms,
etc. All these instruments are usually introduced for the KdV or Schrödinger equation; there are few results
regarding Eq. (1.1). Moreover, the most part of these studies is mainly concerned with a bounded spatial
interval, [6–9].
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The main aim of the present paper is to prove the exponential decay of the energy related to Eq. (1.1) for
the case p = 2, 3, 4 with so-called “localized” damping term. This kind of dissipation was proposed in [10]
to control the KdV equation posed on a bounded interval, and later it was considered for models involved
unbounded domains of waves propagation (see, for instance, [11,12] and the references therein).

We are concerned here with the IVP consisting in a locally damped Kawahara equation subject to initial
data posed on the whole real line:

ut + ux + up−1ux + uxxx − γuxxxxx + a(x)u = 0, (x, t) ∈ R× R+, p = 2, 3, (1.2)
u(x, 0) = u0(x), x ∈ R, (1.3)

where u : R× R+ → R, γ > 0, and a(x) satisfies the following assumptions:

a ∈ L∞(R) is a nonnegative function and a(x) ≥ α0 > 0 for |x| ≥ R, R > 0. (1.4)

Our main goal is to establish local and global (in time) well-posedness of (1.2), (1.3), the smoothing
(hidden regularity) effect, and necessary bounds to prove that E0(t) = 1

2∥u∥
2
L2(R)(t) is exponentially

decreasing as t→ +∞. Technically, we mainly follow [11,12], with new issues regarding the unboundedness
(in both directions) of the spatial domain, and the higher order of the differential operator.

The paper is organized as follows. In the next section we use the Bourgain approach to prove the local
and global well-posedness of (1.2), (1.3) in L2(R). In Section 3, we establish the exponential decay rate of
the energy related to this problem.

2. Notations and well-posedness

2.1. Basic spaces

We use the Sobolev space Hs(R) of order s ∈ R, defined as

Hs(R) = {f ∈ S′(R) : (1 + ξ2)s/2 f(ξ) ∈ L2(R)}.

Here S′(R) indicates the space of tempered distributions over the Schwartz class S(R), and f denotes the
Fourier transform in L2(R). We endowed Hs(R) with the norm

∥f∥Hs =


R
(1 + ξ2)s| f(ξ)|2dξ

1/2
.

If s = m ∈ N, the space Hm(R) coincides with the usual Sobolev space

Wm,2(R) = {u ∈ L2(R) : ∂jxu ∈ L2(R), j = 1, 2, . . . ,m.}

with the norm

∥u∥Wm,2 =


m
j=0


R
|∂jxu(x)|2

 1
2

.

2.2. The Bourgain space Xs,b

Consider the following general dispersive equation

wt − iQ(−i∂x)w = f(x, t), (2.1)

where Q(−i∂x) is a linear differential operator in x-variable whose correspondent symbol Q(ξ) is a non-
constant real polynomial in one variable, f is a given complex-valued function and w := w(x, t), (x, t) ∈ R×R,
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