
Nonlinear Analysis: Real World Applications 30 (2016) 73–98

Contents lists available at ScienceDirect

Nonlinear Analysis: Real World Applications

www.elsevier.com/locate/nonrwa

Persistence in seasonally varying predator–prey systems via the
basic reproduction number

Maurizio Garrionea, Carlota Rebelob,∗

a Dipartimento di Matematica ed Applicazioni, Università di Milano-Bicocca, Via Cozzi 55, 20125 Milano,
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b Centro de Matemática, Aplicações Fundamentais e Investigação Operacional, Faculdade de Ciências,
Universidade de Lisboa, Campo Grande, Edificio C6, piso 2, 1749-016, Lisboa, Portugal

a r t i c l e i n f o

Article history:
Received 30 March 2015
Received in revised form 2 November
2015
Accepted 29 November 2015
Available online 15 December 2015

Keywords:
Uniform persistence
Basic reproduction number
Predator–prey systems

a b s t r a c t

We study persistence in general seasonally varying predator–prey models. Using
the notion of basic reproduction number R0 and the theoretical results proved in
Rebelo et al. (2012) in the framework of epidemiological models, we show that
uniform persistence is obtained as long as R0 > 1. In this way, we extend previous
results obtained in the autonomous case for models including competition among
predators, prey–mesopredator–superpredator models and Leslie–Gower systems.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The importance of seasonality in biological systems is unquestionable [1–4]: with almost no exceptions,
the dynamics of population communities takes place in periodically varying environments. The main cyclic
factors acting in this perspective are both of natural type and human-induced.

Of course, a periodically varying environment can be encountered in several models of different nature,
like ecological (e.g., predator–prey) systems and epidemiological ones. Seasonality can be responsible for a
wide variety of different complex dynamical features, such as multi-year cycles and subharmonics, quasi-
periodic solutions and chaotic behaviors. In particular, it is very natural to wonder, as a first question, if
a system exhibiting T -periodicity in the coefficients (T > 0) will display periodic dynamics, for instance
searching for T -periodic solutions.
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Another basic question about biological models involves the long time survival of the species: in particular,
we may wonder whether the considered system is uniformly persistent with respect to one (or more) species,
namely the number of individuals in that compartment (resp. those compartments) stays positive and
bounded away from zero for any positive time. This issue is particularly common in epidemiology, where
one usually wants to predict if a disease will go towards extinction or if it will remain endemic. Many
authors dealt with this problem giving conditions which guarantee uniform persistence in seasonally forced
epidemiological models, see for example [5–7] and the references therein.

In this paper, we will focus on the study of persistence for predator–prey models subject to seasonality
(see, e.g., [1,3,8]). As a first remark, notice that it is very frequent – and it will also be one of our starting
points – that the dynamics in the prey space exhibits a stable periodic orbit in absence of the predator (for
instance, this is a classical fact if the function describing the internal growth of the preys is a logistic one).
It is therefore natural to study the linearized system around this orbit, trying to understand the effect of the
introduction of a predator. We will employ the usual approach and techniques coming from epidemiology
[5,9], in particular we will recall the notion of basic reproduction number R0 and prove that, under suitable
conditions, the predators will go extinct if R0 < 1 and will persist if R0 > 1. As far as we know, this kind
of approach is not common in ecology, exceptions are, for example, the papers [10,11], dealing however with
autonomous systems.

In autonomous epidemiological models, the basic reproduction number is defined as the expected number
of new infectious produced by a single infectious individual, when introduced into a completely susceptible
population. For those systems, many classical results state that the threshold value of R0 in order to
determine the qualitative dynamical features of the disease spread is 1: if R0 < 1, then the disease will
eventually disappear, while if R0 > 1, it will persist inside the population. In these cases, R0 can usually be
easily computed starting from the coefficients appearing in the equations. On the contrary, it was only in
the last years that the concept of basic reproduction number was successfully extended to nonautonomous
models [7,9], being defined as the spectral radius of a suitable operator associated with the model. This
approach was proved to be quite effective, allowing to obtain several persistence results for nonautonomous
systems coming from epidemiology [5–7].

Throughout the present paper, roughly speaking, R0 may be thought about as the number of predators one
predator gives rise during its life, when introduced in a prey population. For periodic predator–prey models,
this will be done adapting the definitions given in [7,9]. However, we will be able to proceed a little step
further; indeed, not necessarily the population with respect to which persistence is proved corresponds to the
predator one, in fact its choice may be not uniquely determined. Nevertheless, thanks to the generality of the
setting in [7,9], we will be allowed to disregard whether a compartment is made up by preys or predators,
basing our choice only on the dynamics of the system in absence of a certain number of compartments.
Indeed, there are examples in which there exists a stable periodic orbit in the space of predators when preys
do not exist, and not vice versa (see Section 5). Hence, in this case, preys and predators change role in the
definition of R0. This makes the approach sufficiently flexible and suitable to be applied to a quite large
class of models, allowing to find new results for the nonautonomous case, as well as different proofs (often
less laborious) of the results already present for autonomous models; in any case, we will always show that
R0 > 1 implies uniform persistence, and R0 < 1 leads to extinction. Incidentally, notice that, when R0 > 1,
the existence of a periodic motion will follow as a consequence of some results in [12].

The abstract result which will be exploited in our statements, formulated for a general first order
system, is given in Section 2; in Sections 3 and 4, we will apply it to infer results about general models
of predator–prey type, in presence of one or more predators, respectively. Finally, in Section 5 we will
consider a Leslie–Gower model where the role of preys and predators in the definition of R0 is interchanged.
We will constantly explore, after the statements, corresponding models which can be dealt with using our
method.
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