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ABSTRACT

In this paper, we consider the following strongly coupled epidemic model in a
spatially heterogeneous environment with Neumann boundary condition:

AS+bS— (m+k(S+1))S — B(z)SI =0, x € 12,
A1+ cO(x)S)I) + pbl — (m+k(S+ 1)) — 01+ B(x)SI =0, z¢€ {2,
OnS =0l =0, x €002,

where 2 C R™ is a bounded domain with smooth boundary 0(2; b, m, k, c and § are
positive constants; 3(z) € C(£2) and 6(x) is a smooth positive function in £ within
Onf(xz) = 0 on 9£2. The main result is that we have derived the set of positive
solutions (endemic) and the structure of bifurcation branch: after assuming that
the natural growth rate a := b — m of S is sufficiently small, the disease-induced
death rate § is slightly small, and the cross-diffusion coefficient c is sufficiently large,
we show that the model admits a bounded branch I' of positive solutions, which
is a monotone S-type or fish-hook-shaped curve with respect to the bifurcation
parameter §. One of the most interesting findings is that the multiple endemic
steady-states are induced by the cross-diffusion and the spatial heterogeneity of
environments together.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Since the pioneering work of Shigesada, Kawasaki and Teramoto [1], the strongly coupled elliptic sys-

tem has received increasing attention. Many scholars have studied population models with cross-diffusion

terms from various mathematical viewpoints [2-19]. For the existence of positive stationary solutions to

cross-diffusion systems, by using the methods of the bifurcation theory and Lyapunov—Schmidt reduction,
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Kuto [12] studied a Lotka—Volterra predator—prey system with cross-diffusion and found that spatial hetero-
geneity could cause the bifurcation branch to form a bounded fish-hook curve; Wang and Li [16,17] studied
the cooperative systems with cross-diffusion and obtained an unbounded fish-hook-shaped global bifurcation.

In the case where the coefficients of cross-diffusion are spatially homogeneous, some researchers paid their
attention to the effect of cross-diffusion on the spread of epidemic diseases from various aspects, including
the global existence of solutions and positive steady state problems [13,20-25]. However, little attention
has been paid to the positive stationary solution of the epidemic model with cross-diffusion and the spatial
heterogeneity of the environment.

In this paper, based on the model in [26], and motivated by [10-12,15-17,27], we will focus on the following
cross-diffusion epidemic model in a spatially heterogeneous environment:

TOS = AS+bS — (m+k(S+1))S — B(x)S1, r e t>0,

Ol = A((1 4 cO(x)S)I) + pbl — (m+ k(S +I))I —6I + B(x)SI, x€ N2, t>0, (1)
OnS =0l =0, z €9, t>0,

S(z,0) = Sp(x) > 0, I(x,0) = Iy(z) > 0, x € 0,

where S(z,t) and I(x,t) represent the density of the susceptible and the infectious in the same habitat
2, respectively. 7,b,m, k,c and § are positive constants. b and m are the constant birth and death rates,
a := b —m > 0 the natural growth rate of the susceptible, (b — m)/k carrying capacity, § > 0 the disease-
induced death rate. p € [0,1] is the reduction of growth rate due to the disease, and p = 0 means that
the infectious lose their reproducing ability while p = 1 indicates that they experience no reduction in
reproductive fitness. G(z)ST is called the mass action (or density-dependent incidence). G(z) is the disease
transmission rate. 7 indicates a degree of inactivity of the susceptible. The habitat 2 is a bounded domain
in R™ with smooth boundary 92; n is the outward unit normal vector on 92 and 9, = §/9n. In addition,
we require that 5(x), So(z), Io(z) € C(£2), and O(z) is a smooth positive function in 2 with 9,0(z) = 0 on
042. In what follows, we always assume that a > b(1 — p), i.e., bp —m > 0.

It should be emphasized that the nonlinear diffusion cA(f(x)SI) in the second equation of model (1)
yields an important term from both pure mathematical and ecological aspects (see [2] for the ecological
background). It is usually referred to as the cross-diffusion term, which was first proposed to model the
inter- and intra-specific influence on the competitive population system by Shigesada et al. [1]. From the
ecological viewpoint, cross-diffusion expresses that the population flux of a given subpopulation is affected
by the presence of other subpopulations [13]. In an epidemiological perspective, the diffusion of individuals
may be connected with other things, such as escaping high infection risks [23]. One can see that

A (c&(z)SI) = ¢V - [0(x)SVI + IV(0(x)S)],

where 6(x) is known as the cross-diffusion pressure, which means a tendency that I diffuses to the low density
region of §(x)S, and moreover the tendency depends not only on the population pressure of S but also on
the heterogeneity of the environments. In the homogeneous case that 6(x) is a positive constant, model (1)
involves an escape tendency such that infectious I diffuses from high density area of susceptible S towards
low-density area of S. In the heterogeneous case when 6(z) is a positive function, the term A(cf(z)ST)
describes a situation in which infectious I diffuses to the low-value area of (x)S, and the cross-diffusion
coefficient ¢ represents the sensitivity of the infectious I to population pressure from the susceptible S. In
this sense, §(z) yields a certain environment function which indicates an easiness of escape tendency of the
infectious.
Furthermore, we can see that the diffusive flux of the infectious I is

J= —v((1 + cH(m)S)I) = IV (9@)5) - (1 + 09(30)5’) v, (2)
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