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a b s t r a c t

In this paper, we consider the following strongly coupled epidemic model in a
spatially heterogeneous environment with Neumann boundary condition:

∆S + bS − (m+ k(S + I))S − β(x)SI = 0, x ∈ Ω ,
∆((1 + cθ(x)S)I) + ρbI − (m+ k(S + I))I − δI + β(x)SI = 0, x ∈ Ω ,
∂nS = ∂nI = 0, x ∈ ∂Ω ,

where Ω ⊂ Rn is a bounded domain with smooth boundary ∂Ω ; b,m, k, c and δ are
positive constants; β(x) ∈ C(Ω̄) and θ(x) is a smooth positive function in Ω̄ within
∂nθ(x) = 0 on ∂Ω . The main result is that we have derived the set of positive
solutions (endemic) and the structure of bifurcation branch: after assuming that
the natural growth rate a := b − m of S is sufficiently small, the disease-induced
death rate δ is slightly small, and the cross-diffusion coefficient c is sufficiently large,
we show that the model admits a bounded branch Γ of positive solutions, which
is a monotone S-type or fish-hook-shaped curve with respect to the bifurcation
parameter δ. One of the most interesting findings is that the multiple endemic
steady-states are induced by the cross-diffusion and the spatial heterogeneity of
environments together.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Since the pioneering work of Shigesada, Kawasaki and Teramoto [1], the strongly coupled elliptic sys-
tem has received increasing attention. Many scholars have studied population models with cross-diffusion
terms from various mathematical viewpoints [2–19]. For the existence of positive stationary solutions to
cross-diffusion systems, by using the methods of the bifurcation theory and Lyapunov–Schmidt reduction,
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Kuto [12] studied a Lotka–Volterra predator–prey system with cross-diffusion and found that spatial hetero-
geneity could cause the bifurcation branch to form a bounded fish-hook curve; Wang and Li [16,17] studied
the cooperative systems with cross-diffusion and obtained an unbounded fish-hook-shaped global bifurcation.

In the case where the coefficients of cross-diffusion are spatially homogeneous, some researchers paid their
attention to the effect of cross-diffusion on the spread of epidemic diseases from various aspects, including
the global existence of solutions and positive steady state problems [13,20–25]. However, little attention
has been paid to the positive stationary solution of the epidemic model with cross-diffusion and the spatial
heterogeneity of the environment.

In this paper, based on the model in [26], and motivated by [10–12,15–17,27], we will focus on the following
cross-diffusion epidemic model in a spatially heterogeneous environment:

τ∂tS = ∆S + bS − (m+ k(S + I))S − β(x)SI, x ∈ Ω , t > 0,
∂tI = ∆((1 + cθ(x)S)I) + ρbI − (m+ k(S + I))I − δI + β(x)SI, x ∈ Ω , t > 0,
∂nS = ∂nI = 0, x ∈ ∂Ω , t > 0,
S(x, 0) = S0(x) ≥ 0, I(x, 0) = I0(x) ≥ 0, x ∈ Ω ,

(1)

where S(x, t) and I(x, t) represent the density of the susceptible and the infectious in the same habitat
Ω , respectively. τ, b,m, k, c and δ are positive constants. b and m are the constant birth and death rates,
a := b −m > 0 the natural growth rate of the susceptible, (b −m)/k carrying capacity, δ > 0 the disease-
induced death rate. ρ ∈ [0, 1] is the reduction of growth rate due to the disease, and ρ = 0 means that
the infectious lose their reproducing ability while ρ = 1 indicates that they experience no reduction in
reproductive fitness. β(x)SI is called the mass action (or density-dependent incidence). β(x) is the disease
transmission rate. τ indicates a degree of inactivity of the susceptible. The habitat Ω is a bounded domain
in Rn with smooth boundary ∂Ω ; n is the outward unit normal vector on ∂Ω and ∂n = ∂/∂n. In addition,
we require that β(x), S0(x), I0(x) ∈ C(Ω̄), and θ(x) is a smooth positive function in Ω̄ with ∂nθ(x) = 0 on
∂Ω . In what follows, we always assume that a > b(1− ρ), i.e., bρ−m > 0.

It should be emphasized that the nonlinear diffusion c∆(θ(x)SI) in the second equation of model (1)
yields an important term from both pure mathematical and ecological aspects (see [2] for the ecological
background). It is usually referred to as the cross-diffusion term, which was first proposed to model the
inter- and intra-specific influence on the competitive population system by Shigesada et al. [1]. From the
ecological viewpoint, cross-diffusion expresses that the population flux of a given subpopulation is affected
by the presence of other subpopulations [13]. In an epidemiological perspective, the diffusion of individuals
may be connected with other things, such as escaping high infection risks [23]. One can see that

∆

cθ(x)SI


= c∇ · [θ(x)S∇I + I∇(θ(x)S)],

where θ(x) is known as the cross-diffusion pressure, which means a tendency that I diffuses to the low density
region of θ(x)S, and moreover the tendency depends not only on the population pressure of S but also on
the heterogeneity of the environments. In the homogeneous case that θ(x) is a positive constant, model (1)
involves an escape tendency such that infectious I diffuses from high density area of susceptible S towards
low-density area of S. In the heterogeneous case when θ(x) is a positive function, the term ∆(cθ(x)SI)
describes a situation in which infectious I diffuses to the low-value area of θ(x)S, and the cross-diffusion
coefficient c represents the sensitivity of the infectious I to population pressure from the susceptible S. In
this sense, θ(x) yields a certain environment function which indicates an easiness of escape tendency of the
infectious.

Furthermore, we can see that the diffusive flux of the infectious I is

J = −∇


(1 + cθ(x)S)I


= −cI∇

θ(x)S


−


1 + cθ(x)S

∇I, (2)
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