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a b s t r a c t

This paper is concerned with the reaction–advection–diffusion equations with
bistable nonlinearity in periodic media. Assume that the equation has three equi-
libria: an unstable equilibrium θ and two stable equilibria 0 and 1. It is known that
there exist different pulsating fronts connecting any two of those three equilibria. In
this paper we first study the exponential behavior of the fronts when they approach
their stable limiting states. Then, we establish three different types of pulsating
entire solutions for the equation. To establish the existence of entire solutions, we
consider combinations of any two of those different pulsating fronts and construct
appropriate sub- and supersolutions.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we investigate the following reaction–advection–diffusion equation

ut −∇ · (A(x)∇u) + q(x) · ∇u = f(x, u), (t, x) ∈ R× RN . (1.1)

Let C be the periodic cell defined by

C = {x ∈ RN | x ∈ (0, L1)× · · · × (0, LN )}

for some (Li)1≤i≤N ∈ (R+)N . A function v(x) defined in RN is L-periodic with respect to the variable x if
there holds

v(x+ k) = v(x) for all x ∈ RN and k ∈ L1Z× · · ·LNZ.
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Now, we give some assumptions on the coefficients. The diffusion matrix A(x) = (Aij(x))1≤i,j≤N is
assumed to be a symmetric C3(Ω) matrix and such that

∃ 0 < c1 ≤ c2, ∀ ξ ∈ RN , ∀ x ∈ RN , c1|ξ|2 ≤ Σ1≤i,j≤NAij(x)ξiξj ≤ c2|ξ|2,
∀ 1 ≤ i ≤ N, 1 ≤ j ≤ N, Aij is L-periodic w.r.t. x.

(1.2)

Then, there exists a constant R such that

∥A∥ ≤ R and |αAβT | ≤ R|α| |β|, ∀ α, β ∈ RN . (1.3)

The advection coefficient q(x) = (qi(x))1≤i≤N is of class C1,δ(RN ) for some δ ∈ (0, 1) and such that
∇ · q = 0 in RN ,
∀ 1 ≤ i ≤ N, qi is L-periodic w.r.t. x,

∀ 1 ≤ i ≤ N,

C
qi(x)dx = 0.

(1.4)

Let the nonlinearity f(x, u) be L-periodic w.r.t. x and of class C1,δ(RN × R) such that

∀ x ∈ RN , f(x, 0) = f(x, 1) = 0,
∃ θ ∈ (0, 1), f(x, θ) = 0, f(x, u) < 0 for u ∈ (0, θ) and f(x, u) > 0 for u ∈ (θ, 1),
∃ ρ1 ∈ (0, 1), ∀ x ∈ RN , f ′u(x, 0)u ≤ f(x, u) for u ∈ (0, ρ1),
f(x, u) ≤ f ′u(x, 1)(u− 1) for u ∈ (1− ρ1, 1),
C×[0,1]

f(x, u)dxdu > 0.

(1.5)

Then f is a bistable nonlinearity. An archetype of such a function f has the form f(x, u) = u(1− u)(u− θ).
Another archetype is f(x, u) = u(1−u)(u−θ)h(x), where h(x) is a positive function and is L-periodic w.r.t. x.

Remark 1.1. By the assumption (1.5), it is easy to see that there exist a constant K > 0 and a sufficiently
small constant 0 < ρ < ρ1 such thatf(x, η)− ξ0(x)η

 ≤ Kη1+δ for 0 < η < ρ, x ∈ C,f(x, 1− η)− ξ1(x)η
 ≤ Kη1+δ for 0 < η < ρ, x ∈ C.

(1.6)

In particular, one has

fu(x, u) < 0 for all (x, u) ∈ RN × [0, ρ) ∪ (1− ρ, 1].

Define

ξ0(x) = f ′u(x, 0), ξ1(x) = f ′u(x, 1), ξθ(x) = f ′u(x, θ).

Let µi (i = 0, θ, 1) denote the principal eigenvalue of the following linearized operator
Li0ψ := −∇ · (A(x)∇ψ) + q(x)∇ψ − ξi(x)ψ,
ψ is L-periodic w.r.t. x

in the sense that there exist positive functions ϕi (i = 0, θ, 1) in RN such that
Li0ϕi = µiϕi in RN ,
ϕi is L-periodic w.r.t. x.

Then by the assumption (1.5), one can easily get

µ0 > 0 and µ1 > 0.
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