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b Laboratoire: Systèmes Dynamiques et Applications, Faculty of Sciences, Department of Mathematics,
University of Tlemcen, Algeria
c Faculty of Sciences, Departement of Mathématics, University of Tlemcen, Algeria
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A system of nonlinear integro-differential equations is investigated. The model
describes an age structured S.I.S system of a disease with horizontal and vertical
transmission. Global well-posedness is proved in L1space. The method is based on
the contraction fixed point theorem. We exhibit a closed subset of a Banach space,
on which a certain mapping is a strict contraction.
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1. Introduction

One process that characterizes many infectious diseases is vertical transmission. It is defined as the
infection of newborns by their mother. For instance, vertical transmission is the main cause of HIV infection
in children. The study of HIV/AIDS transmission is of great interest for scientists. Mathematical models
play an important role for understanding the dynamics of infectious diseases. In this paper, we consider
well-posedness of an epidemic model describing an SIS system with vertical and horizontal transmission.
They are called SIS models because the susceptible individual become infective and then susceptible again,
upon recovery from infection.
Suppose that Ω is a regular bounded in Rn, n > 1. Let a+ be the maximum age of the individuals. The
population is divided into two groups: infected population u(a, t, x), and susceptible population v (a, t, x),
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depending on chronological age a ∈ [0, a+), time t ∈ [0, T ), for some T > 0, and position x ∈ Ω . The total
population of infected individuals at time t and position x ∈ Ω is

P1 (t, x) =
 a+

0
u(a, t, x)da.

Similarly, the total population of susceptible individuals at time t and position x ∈ Ω is

P2 (t, x) =
 a+

0
v(a, t, x)da.

Let

P (t, x) =
 a+

0
u(a, t, x) + v(a, t, x)da = P1 (t, x) + P2 (t, x) .

The functions µu (a) and µv (a) denote the death rate for the infected and the susceptible individuals
respectively, and βu (a, t, x, P1, P2), βv (a, t, x, P1, P2) are the corresponding birth rate. The vertical
transmission to newborns is

u (0, t, x) = λ

 a+
0

βu (a, t, x, P1, P2)u (a, t, x) da,

v (0, t, x) =
 a+

0
βv (a, t, x, P1, P2) v (a, t, x) + (1− λ)βu (a, t, x, P1, P2)u (a, t, x) da.

This means that a fraction (1− λ) of the offspring from infective parents are susceptible, and a fraction
λ ∈ (0, 1] are infective. Let γ (a, t, x, P1, P2) be the force of infection rate and δ (a, t, x) the recovery rate.

The change rate of the infected population density u is given by

Du (a, t, x) = lim
∆t→0

u (a+ ∆t, t+ ∆t, x)− u (a, t, x)
∆t

= lim
∆t→0

u (a+ ∆t, t+ ∆t, x)− u (a, t+ ∆t, x)
∆t

− u (a, t+ ∆t, x)− u (a, t, x)
∆t

= lim
∆t→0

[ua (a, t+ ∆t, x) + ut (a, t, x)]

= ua (a, t, x) + ut (a, t, x) .

A similar expression defines the change rate of the susceptible population density v(a, t, x). Hence,

Dv (a, t, x) = va (a, t, x) + vt (a, t, x) .

Assume that the susceptible and the infected populations move randomly, described as a Brownian motion.
Then the model describing the relation between u (a, t, x) and v (a, t, x) on the domain Q = [0, a+)×[0, T )×Ω
is given by

∂tu+ ∂au+ µu (a)u = d1∆xu+ γ (a, t, x, P1, P2) v − δ (a, t, x)u
∂tv + ∂av + µv (a) v = d2∆xv − γ (a, t, x, P1, P2) v + δ (a, t, x)u

u (0, t, x) = λ

 a+
0

βu (a, t, x, P1, P2)u (a, t, x) da

v (0, t, x) =
 a+

0
βv (a, t, x, P1, P2) v (a, t, x) + (1− λ)βu (a, t, x, P1, P2)u (a, t, x) da

(1)

The model is to be analyzed under non-zero initial conditions
u (a, 0, x) = u0 (a, x) on


0, a+× Ω

v (a, 0, x) = v0 (a, x) on

0, a+× Ω
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