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a Jacobi matrix from its eigenvalues, its leading principal 
submatrix and part of the eigenvalues of its submatrix 
is considered. The necessary and sufficient conditions for 
the existence and uniqueness of the solution are derived. 
Furthermore, a numerical algorithm and some numerical 
examples are given.
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a b s t r a c t

Using minimax methods and Lusternik–Schnirelmann theory, we study multiple
positive solutions for the Schrödinger–Kirchhoff equation
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[−∆u+ u] = f(u)

in Ωλ = λΩ . The set Ω ⊂ R3 is a smooth bounded domain, λ > 0 is a param-
eter, M is a general continuous function and f is a superlinear continuous func-
tion with subcritical growth. Our main result relates, for large values of λ, the
number of solutions with the least number of closed and contractible in Ω which
cover Ω .

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we study multiple positive solutions for the following problem
Lu = f(u), Ωλ
u > 0, Ωλ
u = 0, ∂Ωλ

(Pλ)

where Ω ⊂ R3 is a smooth bounded domain, λ > 0 is a parameter, Ωλ := λΩ is an expanding domain and
L is the nonlocal operator given by

Lu =M


Ωλ

|∇u|2dx+

Ωλ

u2dx


[−∆u+ u] .
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In 1883, Kirchhoff [1] established the equation

ρ
∂2u

∂t2
−

P0
h

+ E2L

 L
0

∂u∂x
2dx∂2u∂x2 = 0 (K)

where L is the length of the string, h is the area of cross-section, E is the Young modulus of the material, ρ is
the mass density and P0 is the initial tension. This model was proposed to modify the classical d’Alembert’s
wave equation, assuming a nonlinear dependence of the axial strain on the deformation of the gradient.

Owing to its importance in engineering, physics and material mechanics, a considerable effort has been
devoted during the last years to the study the generalization of the stationary equation associated with
problem (K). With no hope of being thorough, we mention some papers regarding the study of this class
of problems: [2–9] and reference therein. For an excellent didactic about this class of problems we cite [10]
and for an overview of non-local problems we cite [11].

Problem (Pλ) is a generalization of the stationary problem associated with problem (K). Before stating
our main result, we need the following hypotheses on the functions M and f .

The continuous functionM : R+ → R+ and the nonlinearity f : R→ R satisfies the following conditions:

(M1) There is m0 > 0 such that M(t) ≥ m0, ∀t ≥ 0.
(M2) The function t →M(t) is increasing.
(M3) The function t → M(t)

t is decreasing.

A typical example of function verifying the assumptions (M1)–(M3) is given by M(t) = m0 + bt, with
m0 > 0 and b > 0. More generally, each function of the form M(t) = m0 + bt+

k
i=1 bit

γi with bi ≥ 0 and
γi ∈ (0, 1) for all i ∈ {1, 2, . . . , k} verifies the hypotheses (M1)–(M3).

Now we give an example of a continuous but non-differentiable function that satisfies such hypotheses. Let
m0, b0, b1 and t0 be positive constants such that b0 ̸= b1 and t0 < m0

b1−b0 if b0 < b1. We define the continuous
function

M(t) =

m0 + b0t, if 0 ≤ t ≤ t0
m0 + (b0 − b1)t0 + b1t, if t0 ≤ t.

Since that b0 ̸= b1, we have that M is non-differentiable in t0. Using the same reasoning, we can build
continuous functions that are not differentiable in a finite number of points.

We assume that the locally Lipschitz continuous function f vanishes in (−∞, 0) and verifies

(f1)

lim
t→0+

f(t)
t3

= 0.

(f2) There is q ∈ (4, 6) such that

lim
t→∞

f(t)
tq−1 = 0.

(f3) There is θ ∈ (4, 6) such that

0 < θF (t) ≤ f(t)t, ∀t > 0,

where F (s) =
 s
0 f(t)dt.
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