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In this paper, the inverse eigenvalue problem of reconstructing 
a Jacobi matrix from its eigenvalues, its leading principal 
submatrix and part of the eigenvalues of its submatrix 
is considered. The necessary and sufficient conditions for 
the existence and uniqueness of the solution are derived. 
Furthermore, a numerical algorithm and some numerical 
examples are given.
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a b s t r a c t

We prove lower estimates for space periodic solutions (u,w)(t) of the micropolar
equations in their maximal interval [0, T ∗) provided that T ∗ <∞. For example, we
show for 0 < δ < 1 that ∥(u,w)(t)∥Ḣs(T3) is at least of the order (T ∗−t)−(δs)/(1+2δ)

for s ≥ 1/2+δ. Moreover, we prove the inequality ∥(u, w)(t)∥l1(Z3) ≥ C(T ∗−t)−1/2,
which yields the blow-up rate (T ∗ − t)−s/3 for ∥(u,w)(t)∥Ḣs(T3) for s > 3/2.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we consider space periodic solutions for the following micropolar system in three dimensions:
ut + u · ∇u +∇p = (µ+ χ)∆u + χ∇×w,
wt + u · ∇w = γ∆w + κ∇div w + χ∇×u− 2χw,
div u = 0,
u(·, 0) = u0(·), w(·, 0) = w0(·),

(1)

where u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) ∈ R3 denotes the velocity field, w(x, t) = (w1(x, t), w2(x, t),
w3(x, t)) ∈ R3 describes the micro-rotational velocity, and p(x, t) ∈ R the hydrostatic pressure. The spatial
domain is the three-dimensional torus T3 = (R mod 2π)3. With x ∈ T3 we denote the space variable and
0 ≤ t < T ∗ denotes the time variable. Here [0, T ∗) is the maximal interval of existence of the strong solution
of (1) and we will always assume that T ∗ is finite. Our aim is to prove blow-up rates for various norms of
the vector function (u,w)(t) and its Fourier coefficients as time approaches the blow-up time T ∗.
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The positive constants µ, χ, κ, and γ are associated with the specific properties of the fluid. More precisely,
µ is the kinematic viscosity, χ is the vortex viscosity, κ and γ are spin viscosities. The initial data for the
velocity field, given by u0 in (1), is divergence-free, i.e., div u0 = 0. To make the pressure unique, we impose
the condition 

T3
p(x, t) dx = 0, ∀0 ≤ t < T ∗.

We also assume, without loss of generality, that
T3

(u0,w0)(x) dx = 0. (2)

There are many works in the literature that prove the existence and uniqueness of solutions for problems
related to the micropolar system (1) as, for example, [1–7]. In particular, G.P. Galdi and S. Rionero [4]
considered the existence of weak solutions of the following initial boundary-value problem for the micropolar
system 

ut + u · ∇u +∇p = (µ+ χ)∆u + χ∇×w, x ∈ Ω , t ∈ [0, T ],
wt + u · ∇w = γ∆w + κ∇div w + χ∇×u− 2χw, x ∈ Ω , t ∈ [0, T ],
div u = 0, x ∈ Ω , t ∈ [0, T ],
u(x, 0) = u0(x), w(x, 0) = w0(x), x ∈ Ω ,
(u(x, t),w(x, t)) = 0, (x, t) ∈ ∂Ω × [0, T ].

(3)

Here Ω ⊂ R3 is a bounded domain with a sufficiently smooth boundary ∂Ω . Also, for the system (3),
J.L. Boldrini, M. Durán and M.A. Rojas-Medar [1] proved, by using the Galerkin method, the existence
and uniqueness (local in time) of strong solution in Lq(Ω), for q > 3; here a compact C2-boundary ∂Ω was
assumed.

Considering the micropolar system (1) with spatial variable given in the whole space R3, J. Yuan [7]
proved the next result, whose proof can be adapted to the space periodic case. For the definition of the
operator ∆j used in the theorem, we refer to [7].

Theorem 1.1 (See [7]).

1. Local existence: Let s0 > 3/2 and assume that (u0,w0) ∈ Hs0(R3) with div u0 = 0. Then there
exists a positive T ∗ = T ∗(∥(u0,w0)∥Hs0 (R3)), with 0 < T ∗ ≤ ∞ so that a unique strong solution
(u,w)(t) ∈ C0([0, T ∗);Hs0(R3))∩C1((0, T ∗);Hs0(R3))∩C0((0, T ∗);Hs0+2(R3)) for the system (1) exists;

2. Blow-up criterion: Assume that s0 > 3/2 and let (u,w)(t) ∈ C0([0, T ∗);Hs0(R3))∩C1((0, T ∗);Hs0(R3))∩
C0((0, T ∗);Hs0+2(R3)) denote the smooth solution for the system (1) in 0 ≤ t < T ∗. There is an absolute
constant M > 0 with the following property: If

lim
ϵ→0

sup
j∈Z

 T∗
T∗−ϵ
∥∆j(∇× u)(t)∥∞ dt := δ < M,

then δ = 0 and the solution (u,w)(t) can be extended past time t = T ∗. If

lim
ϵ→0

sup
j∈Z

 T∗
T∗−ϵ
∥∆j(∇× u)(t)∥∞ dt ≥M,

then the solution (u,w)(t) blows-up at t = T ∗.

It is important to point out that if T ∗ < ∞ is the blow-up instant for the solution (u,w)(t) given by
Theorem 1.1, then one obtains (u,w) ∈ C∞(T3 × (0, T ∗)), with (u,w)(t) ∈ C0((0, T ∗);Hs(T3)) for all
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