
Nonlinear Analysis: Real World Applications 27 (2016) 107–123

Contents lists available at ScienceDirect

Nonlinear Analysis: Real World Applications

www.elsevier.com/locate/nonrwa

Linear Algebra and its Applications 466 (2015) 102–116

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Inverse eigenvalue problem of Jacobi matrix 

with mixed data

Ying Wei 1

Department of Mathematics, Nanjing University of Aeronautics and Astronautics, 
Nanjing 210016, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 January 2014
Accepted 20 September 2014
Available online 22 October 2014
Submitted by Y. Wei

MSC:
15A18
15A57

Keywords:
Jacobi matrix
Eigenvalue
Inverse problem
Submatrix

In this paper, the inverse eigenvalue problem of reconstructing 
a Jacobi matrix from its eigenvalues, its leading principal 
submatrix and part of the eigenvalues of its submatrix 
is considered. The necessary and sufficient conditions for 
the existence and uniqueness of the solution are derived. 
Furthermore, a numerical algorithm and some numerical 
examples are given.

© 2014 Published by Elsevier Inc.

E-mail address: weiyingb@gmail.com.
1 Tel.: +86 13914485239.

http://dx.doi.org/10.1016/j.laa.2014.09.031
0024-3795/© 2014 Published by Elsevier Inc.

Global solutions to nonisentropic hydrodynamic models for
two-carrier plasmas
Jiang Xu∗, Mingfeng Xie
Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing
211106, PR China

a r t i c l e i n f o

Article history:
Received 13 September 2014
Received in revised form 25 June
2015
Accepted 23 July 2015
Available online 12 August 2015

Keywords:
Plasmas
Global solutions
Nonisentropic hydrodynamic models
Chemin–Lerner spaces

a b s t r a c t

This paper is concerned with nonisentropic hydrodynamic models for two-carrier
plasmas, which take the form of Euler equations for conservation laws of mass den-
sity, current density and energy density for two-carrier plasmas, coupled to Poisson’s
equation for self-consistent electronic field. Due to the nonlinear coupling and can-
cellation between electrons and ions, the expected dissipation rates of densities for
two carriers are no longer available in comparison with the one-carrier case, which
leads to the lack of exponential stability near constant equilibrium in the whole
space. In order to capture the weaker dissipation and obtain global solutions in spa-
tially critical Besov spaces, calculus techniques which have been recently developed
in Chemin–Lerner spaces, will be further applied.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Denote by ne = ne (t, x) , ue = (ue1, ue2, . . . , ueN ),We = We(t, x) (ni, ui,Wi, resp.) the mass density,
current density and energy density of electrons (ions, resp.), and by Φ = Φ (t, x) the electrostatic potential.
By applying the moment method and appropriate closure conditions, a hydrodynamic model for plasmas
which takes the form of Euler equations for conservation laws of na, ua and Wa(a = e, i) coupled to
Poisson’s equation of Φ, can be derived from the semiclassical Boltzmann–Poisson equation, see [1] for
more explanation. Precisely,

∂tna + div(naua) = 0,
∂t(naua) + div(naua ⊗ ua) +∇pa = −qana∇Φ − naua,
∂tWa + div(uaWa + uapa) = −qanaua · ∇Φ − (Wa −W ∗),
∆Φ = ne − ni,

(1.1)
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for (t, x) ∈ [0,+∞)× Ω (Ω = RN or TN , N ≥ 2), where qe = −1 and qi = +1. To close (1.1), the pressure
pa satisfies the state equation pa = naTa. Denote by Wa the energy density as W = na|ua|2

2 + 3Pa
2 , and

W ∗ = 3naT∗
2 is ambient device energy, where Te (Ti, resp.) is the temperature of electrons (ions, resp.).

T ∗ > 0 is a given ambient temperature, which is assumed to be a constant for simplicity. The symbols ∇,∆
and ⊗ are the gradient operator, Laplace operator and the tensor products of two vectors, respectively.

System (1.1) is supplemented by initial conditions for na, ua, Ta(a = e, i) and by the boundary condition
for Φ in case that Ω = RN :

na(x, 0) = na0(x), ua(x, 0) = ua0(x), Ta(x, 0) = Ta0(x), (1.2)
lim

|x|→+∞
Φ(t, x) = 0, a.e. t > 0, (1.3)

where the homogeneous boundary condition for Φ means that the plasma is in equilibrium at infinity.
It is not difficult to see that (1.1) becomes an one-carrier nonisentropic hydrodynamic model, if the

transport of one carrier (e.g., electrons) is considered inside devices only. As we all know (see, e.g., [1]),
(1.1) can simulate physical phenomena effectively, such as velocity overshoot and ballistic effects in the
numerical simulation, especially for submicron devices. On the other hand, it reduces the computational
price in comparison with Boltzmann–Poisson equations when using numerical simulation. Therefore, (1.1)
has recently received increasing attention in statistical physics and applied mathematics, which represents
a reasonable compromise between the physical accuracy and the reduction of computational cost.

From the mathematical point of view, (1.1) is a strongly coupled hyperbolic–elliptic system. Furthermore,
with the aid of Green’s formulation in Remark 1.1, it reduces to a quasilinear hyperbolic system with nonlocal
terms. Besides, another partial source terms related to the momentum and energy appear as a hindrance.
To the best of our knowledge, without these source terms, the main feature of (1.1) is the finite-time blowup
of classical solutions even when initial data are smooth and small. Consequently, it is interesting to explore
the large-time behavior of classical solutions by the damping action of the source. In the case of one-carrier,
Chen, Jerome and Zhang [2] first investigated the one-dimensional IBV problem and established the global
existence and asymptotic decay of classical smooth solutions, which indicated that the relaxation term could
prevent the development of shock waves for smooth initial data with small oscillation. For smooth initial data
with large amplitude, Wang and Chen [3] showed the weak dissipation role of heat diffusion and relaxation
damping, which is not strong enough to prevent the formation of singularities and the development of shock
waves. Amster, Varela, Jüngel and Mariani [4] proved the existence of a classical subsonic solution with
positive particle density and positive temperature for steady nonisentropic models. Hsiao–Jiang–Zhang [5]
studied the Cauchy–Neumann problem in dimension three and established the global exponential stability
of small smooth solutions near the constant equilibrium. Subsequently, Li [6] generalized their results to the
perturbation problem of the nonconstant equilibrium and got similar results. In [7], Al̀ı discussed the Cauchy
problem for the extended thermodynamic model (N ≥ 2) and achieved the exponential stability of global
classical solutions. By using harmonic analysis tools, especially for the Littlewood–Paley decomposition and
Bony’s para-product formula, the first author [8] particularly focused on the regularity and established the
exponential decay of classical solutions (close to equilibrium) in spatially critical Besov spaces independently.
Note that some physical parameters, like the momentum, energy relaxation times and Debye length, are
normalized to be one in (1.1). If considered, there are rigorous justifications on the combined singular
parameter limits, which are widely adopted in the nonequilibrium physics. The interested reader is referred
to [7,9–15] and therein references.

For the two-carrier model, it is observed that the dissipative mechanism appear relatively weaker in
comparison with the one-carrier case. More precisely, the dissipation rates of densities for two carriers are
no longer available, which leads to the lack of exponential stability near constant equilibrium in the whole
space. Therefore, the low-frequency and high-frequency methods employed in [8] cannot be applied directly
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