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a b s t r a c t

We study the compressible Euler equation with an outer force. The global existence
theorem has been proved in many papers, provided that the outer force is bounded.
However, the stability of their solutions has not yet been obtained until now. Our
goal in this paper is to prove the existence of a global solution without such an as-
sumption as boundedness. Moreover, we deduce a uniformly bounded estimate with
respect to the time. This yields the stability of the solution.

When we prove the global existence, the most difficult point is to obtain the
bounded estimate for approximate solutions. To overcome this, we employ an invari-
ant region, which depends on both space and time variables. To use the invariant
region, we introduce a modified difference scheme. To prove their convergence, we
apply the compensated compactness framework.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The present paper is concerned with the compressible Euler equation with an outer force.
ρt +mx = 0,

mt +

m2

ρ
+ p(ρ)


x

= F (x, t)ρ, x ∈ R,
(1.1)

where ρ, m and p are the density, the momentum and the pressure of the gas, respectively. If ρ > 0, v = m/ρ

represents the velocity of the gas. For a barotropic gas, p(ρ) = ργ/γ, where γ ∈ (1, 5/3] is the adiabatic
exponent for usual gases. The given function F (x, t) ∈ C1(R ×R+) represents the outer force.

We consider the Cauchy problem (1.1) with the initial data

(ρ,m)|t=0 = (ρ0(x),m0(x)). (1.2)
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The above problem (1.1)–(1.2) can be written in the following form
ut + f(u)x = g(x, u), x ∈ R,

u|t=0 = u0(x),
(1.3)

by using u = t(ρ,m), f(u) = t

m, m

2

ρ + p(ρ)


and g(x, u) = t (0, F (x, t)ρ).
In the present paper, we consider the compressible Euler equation. Let us survey the related mathematical

results.
Concerning the one-dimensional Cauchy problem, DiPerna [1] proved the global existence by the vanish-

ing viscosity method and a compensated compactness argument. The method of compensated compactness
was introduced by Murat [2] and Tartar [3,4]. DiPerna first applied the method to systems for the spe-
cial case where γ = 1 + 2/n and n is an odd integer. Subsequently, Ding, Chen and Luo [5] and Chen [6]
extended his analysis to any γ in (1, 5/3]. In [7], Ding, Chen and Luo treated isentropic gas dynamics with
a source term by using the fractional step procedure.

To state our main theorem, we define the Riemann invariants w, z, which play important roles in this
paper, as

Definition 1.

w := m

ρ
+ ρθ

θ
= v + ρθ

θ
, z := m

ρ
− ρθ

θ
= v − ρθ

θ


θ = γ − 1

2


.

These Riemann invariants satisfy the following.

Remark 1.1.

|w| = |z|, w = 0, when v = 0. |w| 5 |z|, z 5 0, when v 5 0. (1.4)

v = w + z

2 , ρ =

θ(w − z)

2

1/θ
, m = ρv. (1.5)

From the above, the lower bound of z and the upper bound of w yield the bound of ρ and |v|.

Moreover, we define the entropy weak solution.

Definition 2. A measurable function u(x, t) is called a global entropy weak solution of the Cauchy problems
(1.3) if  ∞

−∞

 ∞
0

uφt + f(u)φx + g(x, u)φdxdt+
 ∞
−∞

u0(x)φ(x, 0)dx = 0

holds for any test function φ ∈ C1
0 (R ×R+) and ∞

−∞

 ∞
0

η(u)ψt + q(u)ψx +∇η(u)g(x, u)ψdxdt+
 ∞
−∞

η(u0(x))ψ(x, 0)dx = 0

holds for any non-negative test function ψ ∈ C1
0 (R ×R+), where (η, q) is a pair of convex entropy–entropy

flux of (1.1).

We assume that there exist functions X ∈ C1(R) ∩ L1(R) and T ∈ C1(R+) such that

|F (x, t)− T (t)| 5 X(x) t ∈ R+, (1.6)

and I ∈ L∞(R+), where I(t) =
 t
0 T (s)ds.
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