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a b s t r a c t

A diffusive one-prey and two-competing-predators system under homogeneous
Dirichlet boundary conditions is studied. First, we obtain sufficient conditions for the
extinction and existence of global attractor of the time-dependent system by means
of the comparison principle. Second, we discuss the existence and nonexistence of
coexistence states, and give sufficient conditions for the existence of coexistence
states by using the fixed point index theory. In addition, we investigate the
bifurcation from a double eigenvalue by virtue of space decomposition and implicit
function theorem. Finally, some numerical simulations are made to verify and
complement the theoretical analysis.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, reaction–diffusion equations modeling of various systems have attracted considerable
attention in mathematical biology, especially the predator–prey systems with various functional responses
and different boundary conditions. In population dynamics, the relationship between predator and their prey
plays an important role. From the biological significance of reality, a key issue for a predator–prey system
study is whether the various species can coexist. Therefore, the elliptic steady state of predator–prey system
becomes the main object being studied.

On the other hand, taking into account spatially inhomogeneous distribution at any given time, we are
concerned in this paper with the following three species predator–prey system under homogeneous Dirichlet
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boundary conditions:

ut −∆u = u


a− u− αv

1 + k1αu
− βw

1 + k2βu


, x ∈ Ω , t > 0,

vt −∆v = v


p1αu

1 + k1αu
− p1αv

1 + k1αu
− c1w − d1


, x ∈ Ω , t > 0,

wt −∆w = w


p2βu

1 + k2βu
− p2βw

1 + k2βu
− c2v − d2


, x ∈ Ω , t > 0,

u(x, t) = v(x, t) = w(x, t) = 0, x ∈ ∂Ω , t > 0,
u(x, 0) = u0(x) ≥ 0, ̸≡ 0, v(x, 0) = v0(x) ≥ 0, ̸≡ 0, x ∈ Ω ,
w(x, 0) = w0(x) ≥ 0, ̸≡ 0, x ∈ Ω ,

(I)

where Ω is a bounded domain in RN with smooth boundary ∂Ω . u, v and w represent the densities of the
prey and the two predators respectively. a is the intrinsic growth rate of prey u. α and β measure efficiency of
the searching and the capture of predators v, w respectively. k1 and k2 represent the handling and digestion
rates of predators. p1 and p2 represent the efficiency of converting consumed prey into predator births. c1
and c2 measure the interspecific competition factors that are interference competition of the predator v on
predator w and vice versa. d1 and d2 are the death rates of the two predators. u0(x), v0(x) and w0(x) are
continuous functions. The parameters a, α, β, ki, pi, ci, di (i = 1, 2) are positive constants.

The dynamical interactions of a one-prey and two-competing-predators model is proposed as (I). The
ODE model corresponding to (I) was presented and studied in [1], where the ecological background of the
model was explained in detail and the persistence of the ODE model with a = 1 was studied. In (I), the
Holling type-II functional response u

1+hu is used to describe feeding of the two predators v and w on prey u.
This functional response was proposed by Michaelis–Menten and Holling in studying enzymatic reactions and
predator–prey models. Mathematical and mechanistical simplicity is the biggest advantage of the Holling
type-II functional response. For more information about the background and applications of the Holling
type-II functional response, one can refer to [2–4].

At present, the two species predator–prey models have been studied extensively, see [5–21] and the
references therein. However, the dynamics ones have not be well investigated since they are more complicated
than those of two species cases. About three species reaction–diffusion systems, one can see [22–33]. Some
of these references gave the conditions of existence and nonexistence of positive solutions (see [22–27]).
In [22–26,28], the three species predator–prey systems with homogeneous Neumann boundary conditions
were discussed. Especially in [25], the existence of positive steady state solution for the three species
predator–prey model was discussed by using the bifurcation theory. In [27,29,30], the interaction of species
involving persistence and extinction was investigated. For the dynamics of more species interacting models,
one can refer to [34–36] and the references therein. The food chain models were studied in [24,30,34–36],
for example, the stability of the constant positive steady state solution in [24], and the existence and
nonexistence of nonconstant positive steady state solutions for a food chain model are also investigated by
means of the fixed point index theory. We point out that little work has been done about system (I) at the
moment.

For the sake of simplicity, we denote k1α = h1, k2β = h2, p1α = e1, p2β = e2. Then problem (I) is reduced
to

ut −∆u = u


a− u− αv

1 + h1u
− βw

1 + h2u


, x ∈ Ω , t > 0,

vt −∆v = v


e1u

1 + h1u
− e1v

1 + h1u
− c1w − d1


, x ∈ Ω , t > 0,

wt −∆w = w


e2u

1 + h2u
− e2w

1 + h2u
− c2v − d2


, x ∈ Ω , t > 0, (1.1)
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