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We study the existence of periodic solutions for a second order non-autonomous
dynamical system containing variable kinetic energy terms. Subquadratic problems
and superquadratic problems are both considered.
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1. Introduction and main results

We consider the following problem. One wishes to solve

− ẍ(t) = B(t)x(t) +∇xV (t, x(t)), (H)

where

x(t) = (x1(t), . . . , xn(t))

is a map from I = [0, T ] to Rn such that each component xj(t) is a periodic function in H1 with period T ,
and the function V (t, x) = V (t, x1, . . . , xn) is continuous from Rn+1 to R with

∇xV (t, x) = (∂V/∂x1, . . . , ∂V/∂xn) ∈ C(Rn+1,Rn). (1)

For each x ∈ Rn, the function V (t, x) is periodic in t with period T . The elements of the symmetric matrix
B(t) are to be real-valued functions bjk(t) = bkj(t), and each function is to be periodic with period T . We
will consider each function to be defined on the interval I.
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The periodic non-autonomous problem

− ẍ(t) = ∇xV (t, x(t)) (2)

has an extensive history in the case of singular systems (cf., e.g., Ambrosetti–Coti Zelati [1]). The first to
consider it for potentials satisfying (1) were Berger and Schechter [2] in 1977. They proved the existence of
solutions to (2) under the condition that

V (t, x)→∞ as |x| → ∞

uniformly for a.e. t ∈ I. Subsequently, Mawhin–Willem [3], Tang [4–8] Tang–Wu [9–11] and others
proved existence under various conditions (cf. the references given in these publications). Most previous
work considered the case when B(t) = 0. Ding and Girardi [12] considered the case of (H) when the
potential oscillates in magnitude and sign, and found conditions for solutions when the matrix B(t) is
symmetric and negative definite and the function V (x) grows superquadratically and satisfies a homogeneity
condition. Antonacci [13,14] gave conditions for existence of solutions with stronger constraints on the
potential but without the homogeneity condition, and without the negative definite condition on the matrix.
Generalizations of the above results are given by [13,15–26].

In this paper, we shall study this problem under the following assumptions. Our assumption on B(t) is:

(B) Each component of B(t) is an integrable function on I, i.e., for each j and k, bjk(t) ∈ L1(I).

Although this assumption is very weak, it is sufficient to allow us to find an extension D of the operator

D0x := −ẍ(t)−B(t)x(t)

having a discrete, countable spectrum consisting of isolated eigenvalues of finite multiplicity with a finite
lower bound −L

−∞ < −L < λ1 < λ2 < · · · < λl < · · · .

(D is defined in the next section.) Let λl be the first positive eigenvalue of D. We allow λl−1 = 0. For the
superquadratic case, we assume:

(V1) Assume

2V (t, x) ≥ λl−1|x|2, t ∈ I, x ∈ Rn

and there are positive constants µ < λl and δ such that

2V (t, x) ≤ µ|x|2, |x| ≤ δ, x ∈ Rn.

(V2) There exists q > 2 such that

lim
|x|→∞

V (t, x)
|x|q

< +∞

uniformly for all t ∈ I.
(V3) lim|x|→∞ V (t,x)

|x|2 = +∞ uniformly for all t ∈ I.
(V4) There exists θ ≥ 1 such that

θF (t, x) ≥ F (t, sx) ∀(t, x) ∈ I × Rn, ∀s ∈ [0, 1],

where F (t, x) = (x,∇xV (t, x))− 2V (t, x).
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