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a b s t r a c t

Fluids flow followed by Darcy’s law through inhomogeneous porous media is studied by
the theory of Finsler geometry. According to Fermat’s variational principle, the nonlinear
paths of fluids flow called Darcy’s flow are described by geodesics in a Finsler space. For
inhomogeneous media, the direction dependence of Darcy’s flow gives a Finsler metric
called Kropina metric. Then, the influence of direction dependence on the Darcy’s flow is
shown by the differences between Riemannian geodesics and Finslerian geodesics. In this
case, the deviation curvature tensor implies that the trajectory of Darcy’s flow is Jacobi
unstable for the deviation of geodesics. Moreover, similar to Darcy’s flow, the seismic ray
path in anisotropicmedia can be defined in Finsler space, and themetric of seismic ray path
is given by the m th root metric. It is shown that the relationship between the variational
problems of Darcy’s flow and seismic ray path in Finsler space.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The ray theory based on Fermat’s variational principle is closely related to differential geometry [1,2]. In the simplest
case, a shortest ray path between two different points is given by a straight line in Euclidean space. However, the real ray
path is not a straight line because of physical or chemical property of media. Therefore, from a viewpoint of geometry, the
ray theory is actually formulated in the non-Euclidean space.

For the non-Euclidean ray theory, the anisotropy ofmedia such as crystals or rocks is connectedwith a geometric property
of ray path. The anisotropy ofmedia corresponds to the direction dependence ofmetric tensor. Thismeans that the ray theory
for anisotropic media is defined in a non-Riemannian space called Finsler space [1,3,4]. For example, the propagation of
elastic wave or the seismic wave through anisotropic media has been discussed by the theory of Finsler geometry [5–9]. The
ray path is regarded as the geodesics, and the elementarywavefront corresponds to the indicatrix in the Finsler space. In this
case, the gradient of the wavefront function for the anisotropic media is perpendicular to the wavefront in the Hamiltonian
sense [10]. Especially, the anisotropy of rocks is related to the parameter ofmth root metric in Finsler space [11].

Similar to the seismic ray theory, the fluids flow or heat flow through inhomogeneous media is also based on Fermat’s
variational principle [12,13]. The motion of fluids flow is given by Darcy’s law, which states that the velocity of fluid flow
is proportional to the gradient of hydraulic head. In this case, since the hydraulic conductivity depends on the position
by the inhomogeneity, the fluid streamline is not a straight line. This means that the fluids flow through inhomogeneous
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porous media is geometrically formulated in the non-Euclidean space. It has been mentioned that the Finslerian framework
of Darcy’s flow which depends on the direction caused by a change of area perpendicular to flow [13]. Therefore, Darcy’s
flow will be discussed based on the fundamental function and the geometric objects in the Finsler space.

In this study, the fluids flow through inhomogeneous porous media is formulated by the Finsler geometry. In Section 2,
the Finsler metric of Darcy’s flow is obtained. In Section 3, the geodesics as the path of Darcy’s flow are investigated. Then,
in Section 4, the stability of Darcy’s flow is discussed based on curvature tensor. Moreover, in Section 5, the relationship
between theDarcy’s flow and other Finslerian ray theory, the seismic ray theory is shown. Finally, Section 6 is the conclusion.
In this paper, we use Einstein’s summation convention.

2. Finsler metric of Darcy’s flow through inhomogeneous media

2.1. Brief review of Fermat’s variational principle for Darcy’s flow

In this study, we consider a two-dimensional path of fluids flow based on [13]. Let (xi) = (x1, x2) be the local coordinates
of the cross-section in the Earth’s interior. Here, x1 is horizontally directed to the Earth’s surface, and x2 is vertically directed
to the Earth’s interior. From [13], the path of fluids flow through inhomogeneous porous media between two fixed points
xa and xb is given by Fermat’s variational principle which renders the total resistance of flow minimum:

δJ = δ

 xb

xa
pdl = δ

 xb

xa

I2ρ
A

dl = 0, (1)

where p = I2ρ/A. A, l and I are the variable cross-sectional area of flux tube perpendicular to the flow, the length of flow
and the flux of flow, respectively. ρ is the resistance or the reciprocal of conductivity κ given by Darcy’s law:

vi = κ(xj)
∂u
∂xi
, (2)

where vi and u are the rate of fluids’ flow and the hydraulic head. According to [13], the fluids flow described by (1) and (2)
is called Darcy’s flow. In the following, from a general viewpoint, we formulate the general case that ρ is a function of both
x1 and x2: ρ(xi) = ρ(x1, x2).

2.2. Geometric framework and Finsler function of Darcy’s flow

Based on the above conditions, we derive a Finsler metric of Darcy’s flow. Let M be a two-dimensional manifold corre-
sponding to the cross-section in the Earth’s interior. (xi) = (x1, x2) are the local coordinates on M . Moreover, let TM be a
tangent bundle overM , and (xi, yi) are the local coordinates on TM , where yi = dxi/dt , and t is a time. Then, the variational
problem (1) is rewritten by

δJ = δ

 tb

ta

I2ρ(xi)
A


(y1)2 + (y2)2dt = 0. (3)

Fermat’s variational principle determines the shape of ray path of Darcy’s flow. The incident angle θ between the ray of
Darcy’s flow and the horizontal x1-axis is given by

y′
≡ tan θ =

dx2

dx1
=

y2

y1
, (4)

cos θ =
dx1

(dx1)2 + (dx2)2
, sin θ =

dx2
(dx1)2 + (dx2)2

. (5)

When the constant area of flux tube projected on x2-axis is denoted by A0, the variable area A perpendicular to flow is
expressed by A = A0 cos θ [13]. In this case, from (5), the cross-sectional area A depends on the direction of ray:

A(yi) =
A0y1

(y1)2 + (y2)2
. (6)

The dependence of yi in (6) implies that the Darcy’s flow is formulated by the Finsler geometry [13]. From (3) and (6), the
fundamental function of Darcy’s flow is given by

L(xi, yi) =
I2ρ(xi)

A0


(y1)2 + (y2)2

y1


. (7)
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