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a b s t r a c t

In Gwiazda, et al. (2012) a framework for studying cell differentiation processes based on
measure-valued solutions of transport equations was introduced. Under application of the
so-calledmeasure-transmission conditions it enabled to describe processes involving both
discrete and continuous transitions. This framework, however, admits solutions which
lack continuity with respect to initial data. In this paper, we modify the framework from
Gwiazda, et al. (2012) by replacing the flat metric, known also as bounded Lipschitz dis-
tance, by a newWasserstein-type metric. We prove, that the newmetric provides stability
of solutions with respect to perturbations of initial data while preserving their continuity
in time. The stability result is important for numerical applications.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Cell differentiation process is a biological phenomenon, in which immature cells of living organisms give rise to more
mature, i.e. more specialized, ones, see e.g. [1]. In humans, this process takes place primarily during gestation, childhood and
adolescence. During these initial stages of human development a fertilized egg cell, called zygote, divides and differentiates
multiple times, eventually giving rise to mature cells of blood, muscles, skin, brain etc. In some tissues, the process of cell
differentiation persists during adulthood.

For instance, neural stem cells or neural progenitors, which reside in the part of brain called hippocampus, can differen-
tiate (Fig. 1) to become eventually mature neurons, which has implications for human memory, see e.g. [2,3].

Fig. 1. Schematic drawing of the process of differentiation of neurons in hippocampus. From the discrete state of neural progenitor a cell differentiates
to become a young neuron. This continuous phase lasts around four weeks and consists in migration and morphological maturation. Finally, the young
neuron reaches the discrete state of maturity.
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Various mathematical models, focusing on different aspects of the process of cell differentiation, and using various
mathematical structures, have been proposed in the scientific literature. They includemodelling differentiation switches via
Markov chains or systems of ordinary differential equations (see [4–6]), modelling the inherent stochasticity via branching
processes (see e.g. [7–9]), modelling delays via delay differential equations (see [10–12] and references therein), modelling
spatial dynamics via discrete lattice models or reaction–diffusion equations (see [13,14]) and others.

The approach developed in the present paper is called structured population models. It consists in tracing populations of
cells according to theirmaturity levelwhich is described by a real structure variable x ∈ R. The order on states x is inherited
from R, which means that state x2 is more differentiated (i.e. more specialized, more mature) than state x1 iff x1 < x2. This,
in turn, means that a cell from state x1 can differentiate into a cell in state x2 yet not vice versa. We distinguish two types of
states:
• discrete states, in which cells can stay for a positive period of time (e.g. state of stem cell, state of mature cell),
• continuous states, which cells pass without halting (e.g. the group of states corresponding to maturing neuron).

Depending on the topology of the state space we distinguish three basic groups of structured population models of cell
differentiation:
• discrete models, with state space being a finite subset of R and composed of discrete states only; the dynamics is based

on systems of ODEs, see e.g. [15–18],
• continuous models, with state space being an interval and composed of continuous states only; the evolution of popu-

lation of cells is then described by a time-dependent density u(t, x) or, more generally, time-dependent positive Radon
measure µ(t) ∈ M(R)which evolves according to the transport (balance) equation ∂tµ+ ∂x(gµ) = pµ, see [19–23],

• mixed models, which have both discrete and continuous parts, see [24].

In [25] continuous andmixedmodels of cell differentiationwere embedded into a general framework based onmeasure-
valued solutions of transport equations. We refer to this paper for motivations and further biological background as well as
derivation of constituents of the model. Mathematically, framework from [25] reads as follows:

∂tµ(t)+ ∂x(g1(v(t))1x≠xi(x)µ(t)) = p(v(t), x)µ(t), (1.1)

g1(v(t))
Dµ(t)
DL1

(x+

i ) = ci(v(t))


{xi}
dµ(t), i = 0, . . . ,N (1.2)

µ(0) = µ0, (1.3)
where t ∈ R+ and x ∈ R. x0 < x1 < · · · < xN is a finite collection of points in R, which correspond to discrete states. 1x≠xi
is equal to 1 if x ∈ (x0, x1)∪ (x1, x2)∪ · · · ∪ (xN−1, xN) and 0 otherwise. Dµ

DL1 denotes the density of measureµwith respect
to the one-dimensional Lebesgue measure and v(t) :=


{xN }

dµ(t) denotes the mass of point xN . The initial datum µ0 is a
Radon measure supported on the interval [x0, xN ].

Under certain assumptions on coefficients (see [25, Assumptions 3.2]) it was proven that there exists a unique solution
µ ∈ C([0,∞), (M, ρF ))

of problem (1.1)–(1.3). Here, M = M(R) is the space of nonnegative Radon measures on R (see [26] for an introduction to
measure theory) and C([0,∞), (M, ρF )) is the space of continuous functions on [0,∞) with values in space M equipped
with the flat metric ρF , which is an adaptation of Wasserstein metric used in the theory of optimal transport, see [27]. This
metric, known also under the name bounded Lipschitz distance, is defined by

ρF (µ1, µ2) := sup
ψ∈Lipb(R),|ψ |≤1,Lip(ψ)≤1


R
ψd(µ1 − µ2), (1.4)

where Lipb(R) is the set of bounded Lipschitz continuous functions on R and Lip(ψ) is the Lipschitz constant of ψ .
The starting point for the present research is the fact that the space C([0,∞), (M, ρF )) is incompatiblewith the structure

of problem (1.1)–(1.3) in the sense highlighted by the following example.

Example 1 (Instability in Flat Metric). Take N = 2 and let g1 ≡ 1 and c1 ≡ 0 in (1.1)–(1.3). For initial conditionµ0 = δx1 the
unique solution of problem (1.1)–(1.3) in the sense of [25, Definition 3.3] is given by

µ(t) = δx1(dx).

Here, δx1(dx) denotes a Dirac mass concentrated in x1.
For a perturbed initial condition µε0 = δx1+ε , on the other hand, we have

µε(t) = δx1+ε+t(dx).

Using formula (1.4), we obtain ρF (µ(t), µϵ(t)) = t + ϵ. This means that
• ρF (µ0, µ

ε
0) = ε → 0 as ε → 0,

• ρF (µ(t), µε(t)) = t + ε → t as ε → 0.
Hence, solutions are neither continuous nor stable with respect to initial data.
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